function [residuals,JJacobian] = perfect_foresight_mcp_problem(y, dynamic_function, Y0, YT, ... exo_simul, params, steady_state, ... maximum_lag, T, ny, i_cols, ... i_cols_J1, i_cols_1, i_cols_T, ... i_cols_j, i_cols_0,i_cols_J0, eq_index) % function [residuals,JJacobian] = perfect_foresight_mcp_problem(y, dynamic_function, Y0, YT, ... % exo_simul, params, steady_state, ... % maximum_lag, T, ny, i_cols, ... % i_cols_J1, i_cols_1, i_cols_T, ... % i_cols_j,eq_index) % Computes the residuals and the Jacobian matrix for a perfect foresight problem over T periods % in a mixed complementarity problem context % % INPUTS % y [double] N*1 array, terminal conditions for the endogenous variables % dynamic_function [handle] function handle to _dynamic-file % Y0 [double] N*1 array, initial conditions for the endogenous variables % YT [double] N*1 array, terminal conditions for the endogenous variables % exo_simul [double] nperiods*M_.exo_nbr matrix of exogenous variables (in declaration order) % for all simulation periods % params [double] nparams*1 array, parameter values % steady_state [double] endo_nbr*1 vector of steady state values % maximum_lag [scalar] maximum lag present in the model % T [scalar] number of simulation periods % ny [scalar] number of endogenous variables % i_cols [double] indices of variables appearing in M_.lead_lag_incidence % and that need to be passed to _dynamic-file % i_cols_J1 [double] indices of contemporaneous and forward looking variables % appearing in M_.lead_lag_incidence % i_cols_1 [double] indices of contemporaneous and forward looking variables in % M_.lead_lag_incidence in dynamic Jacobian (relevant in first period) % i_cols_T [double] columns of dynamic Jacobian related to contemporaneous and backward-looking % variables (relevant in last period) % i_cols_j [double] indices of variables in M_.lead_lag_incidence % in dynamic Jacobian (relevant in intermediate periods) % eq_index [double] N*1 array, index vector describing residual mapping resulting % from complementarity setup % OUTPUTS % residuals [double] (N*T)*1 array, residuals of the stacked problem % JJacobian [double] (N*T)*(N*T) array, Jacobian of the stacked problem % ALGORITHM % None % % SPECIAL REQUIREMENTS % None. % Copyright © 1996-2020 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . YY = [Y0; y; YT]; residuals = zeros(T*ny,1); if nargout == 2 iJacobian = cell(T,1); end i_rows = 1:ny; offset = 0; i_cols_J = i_cols; for it = maximum_lag+(1:T) if nargout == 1 res = dynamic_function(YY(i_cols),exo_simul, params, ... steady_state,it); residuals(i_rows) = res(eq_index); elseif nargout == 2 [res,jacobian] = dynamic_function(YY(i_cols),exo_simul, params, steady_state,it); residuals(i_rows) = res(eq_index); if T==1 && it==maximum_lag+1 [rows, cols, vals] = find(jacobian(eq_index,i_cols_0)); if size(jacobian, 1) == 1 % find() will return row vectors in this case rows = rows'; cols = cols'; vals = vals'; end iJacobian{1} = [rows, i_cols_J0(cols), vals]; elseif it == maximum_lag+1 [rows,cols,vals] = find(jacobian(eq_index,i_cols_1)); if numel(eq_index) == 1 % find() will return row vectors in this case rows = rows'; cols = cols'; vals = vals'; end iJacobian{1} = [offset+rows, i_cols_J1(cols), vals]; elseif it == maximum_lag+T [rows,cols,vals] = find(jacobian(eq_index,i_cols_T)); if numel(eq_index) == 1 % find() will return row vectors in this case rows = rows'; cols = cols'; vals = vals'; end iJacobian{T} = [offset+rows, i_cols_J(i_cols_T(cols)), vals]; else [rows,cols,vals] = find(jacobian(eq_index,i_cols_j)); if numel(eq_index) == 1 % find() will return row vectors in this case rows = rows'; cols = cols'; vals = vals'; end iJacobian{it-maximum_lag} = [offset+rows, i_cols_J(cols), vals]; i_cols_J = i_cols_J + ny; end offset = offset + ny; end i_rows = i_rows + ny; i_cols = i_cols + ny; end if nargout == 2 iJacobian = cat(1,iJacobian{:}); JJacobian = sparse(iJacobian(:,1),iJacobian(:,2),iJacobian(:,3),T*ny,T*ny); end