function Ifac = mcmc_ifac(X, Nc) % function Ifac = mcmc_ifac(X, Nc) % Compute inefficiency factor of a MCMC sample X based on a Parzen Window % % INPUTS % X: time series % Nc: # of lags % % OUTPUTS % Ifac: inefficiency factor of MCMC sample % % SPECIAL REQUIREMENTS % none % ALGORITHM: % Inefficiency factors are computed as % \[ % Ifac = 1 + 2\sum\limits_{i=1}^{Nc} {\hat \rho(i)} % \] % where $\hat \rho(i)$ denotes the autocorrelation at lag i and the terms % of the sum are truncated using a Parzen window. % % For inefficiency factors, see Section 6.1 of Paolo Giordani, Michael Pitt, and Robert Kohn (2011): % "Bayesian Inference for Time Series State Space Models" in : John Geweke, Gary Koop, % Herman van Dijk (editors): "The Oxford Handbook of Bayesian % Econometrics", Oxford University Press % % The Parzen-Window is given by % \[ % k(x) = \left\{ {\begin{array}{*{20}{c}} % {1 - 6{x^2} + 6|x|^3} \text{ for } 0 \leqslant |x| \leqslant \frac{1}{2}} \\ % {2(1-|x|^3) \text{ for } \frac{1}{2} \leqslant |x| \leqslant 1} \\ % {0 \text{ otherwise}} % \end{array}} \right. % \] % See Donald W.K Andrews (1991): "Heteroskedasticity and autocorrelation % consistent covariance matrix estimation", Econometrica, 59(3), p. 817-858 % Copyright © 2015-2017 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . Nc = floor(min(Nc, length(X)/2)); if mod(Nc,2) Nc=Nc-1; end AcorrXSIM = dyn_autocorr(X(:), Nc); % %Calculate the Parzen Weight Parzen=zeros(Nc+1,1); for i=1: Nc/2+1 Parzen(i)=1 - 6*(i/Nc)^2+ 6*(i/Nc)^3; end for i=(Nc/2)+1: Nc+1 Parzen(i)=2 * (1-(i/Nc))^3; end Parzen=Parzen'; Ifac= 1+2*sum(Parzen(:).* AcorrXSIM); function acf = dyn_autocorr(y, ar) % function acf = dyn_autocorr(y, ar) % autocorrelation function of y % % INPUTS % y: time series % ar: # of lags % % OUTPUTS % acf: autocorrelation for lags 1 to ar % % SPECIAL REQUIREMENTS % none y=y(:); acf = NaN(ar+1,1); acf(1)=1; m = mean(y); sd = std(y,1); for i=1:ar acf(i+1) = (y(i+1:end)-m)'*(y(1:end-i)-m)./((size(y,1))*sd^2); end