function [H, dA, dOm, Hss, info] = getH(A, B, M_,oo_,kronflag,indx,indexo) % computes derivative of reduced form linear model w.r.t. deep params % % Copyright (C) 2008 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . if nargin<3 | isempty(kronflag), kronflag = 0; end if nargin<4 | isempty(indx), indx = [1:M_.param_nbr];, end, if nargin<5 | isempty(indexo), indexo = [];, end, [I,J]=find(M_.lead_lag_incidence'); yy0=oo_.dr.ys(I); % yy0=[]; % for j=1:size(M_.lead_lag_incidence,1); % yy0 = [ yy0; oo_.dr.ys(find(M_.lead_lag_incidence(j,:)))]; % end [df, gp] = feval([M_.fname,'_params_derivs'],yy0, oo_.exo_steady_state', M_.params, 1); [residual, g1 ] = feval([M_.fname,'_dynamic'],yy0, oo_.exo_steady_state', M_.params,1); [residual, g1, g2 ] = feval([M_.fname,'_dynamic'],yy0, oo_.exo_steady_state', M_.params,1); [residual, gg1] = feval([M_.fname,'_static'],oo_.dr.ys, oo_.exo_steady_state', M_.params); % df = feval([M_.fname,'_model_derivs'],yy0, oo_.exo_steady_state', M_.params, 1); dyssdtheta = -gg1\df; Hss = dyssdtheta(oo_.dr.order_var,indx); dyssdtheta = dyssdtheta(I,:); [nr, nc]=size(g2); nc = sqrt(nc); ns = max(max(M_.lead_lag_incidence)); gp2 = gp*0; for j=1:nr, [I J]=ind2sub([nc nc],find(g2(j,:))); for i=1:nc, is = find(I==i); is = is(find(J(is)<=ns)); if ~isempty(is), g20=full(g2(j,find(g2(j,:)))); gp2(j,i,:)=g20(is)*dyssdtheta(J(is),:); end end end gp = gp+gp2; gp = gp(:,:,indx); param_nbr = length(indx); % order_var = [oo_.dr.order_var; ... % [size(oo_dr.ghx,2)+1:size(oo_dr.ghx,2)+size(oo_.dr.transition_auxiliary_variables,1)]' ]; % [A(order_var,order_var),B(order_var,:)]=dynare_resolve; % [A,B,ys,info]=dynare_resolve; % if info(1) > 0 % H = []; % A0 = []; % B0 = []; % dA = []; % dOm = []; % return % end m = size(A,1); n = size(B,2); klen = M_.maximum_endo_lag + M_.maximum_endo_lead + 1; k1 = M_.lead_lag_incidence(find([1:klen] ~= M_.maximum_endo_lag+1),:); a = g1(:,nonzeros(k1')); da = gp(:,nonzeros(k1'),:); kstate = oo_.dr.kstate; GAM1 = zeros(M_.endo_nbr,M_.endo_nbr); Dg1 = zeros(M_.endo_nbr,M_.endo_nbr,param_nbr); % nf = find(M_.lead_lag_incidence(M_.maximum_endo_lag+2,:)); % GAM1(:, nf) = -g1(:,M_.lead_lag_incidence(M_.maximum_endo_lag+2,nf)); k = find(kstate(:,2) == M_.maximum_endo_lag+2 & kstate(:,3)); GAM1(:, kstate(k,1)) = -a(:,kstate(k,3)); Dg1(:, kstate(k,1), :) = -da(:,kstate(k,3),:); k = find(kstate(:,2) > M_.maximum_endo_lag+2 & kstate(:,3)); kk = find(kstate(:,2) > M_.maximum_endo_lag+2 & ~kstate(:,3)); nauxe = 0; if ~isempty(k), ax(:,k)= -a(:,kstate(k,3)); ax(:,kk)= 0; dax(:,k,:)= -da(:,kstate(k,3),:); dax(:,kk,:)= 0; nauxe=size(ax,2); GAM1 = [ax GAM1]; Dg1 = cat(2,dax,Dg1); clear ax end [junk,cols_b,cols_j] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+1, ... oo_.dr.order_var)); GAM0 = zeros(M_.endo_nbr,M_.endo_nbr); Dg0 = zeros(M_.endo_nbr,M_.endo_nbr,param_nbr); GAM0(:,cols_b) = g1(:,cols_j); Dg0(:,cols_b,:) = gp(:,cols_j,:); % GAM0 = g1(:,M_.lead_lag_incidence(M_.maximum_endo_lag+1,:)); k = find(kstate(:,2) == M_.maximum_endo_lag+1 & kstate(:,4)); GAM2 = zeros(M_.endo_nbr,M_.endo_nbr); Dg2 = zeros(M_.endo_nbr,M_.endo_nbr,param_nbr); % nb = find(M_.lead_lag_incidence(1,:)); % GAM2(:, nb) = -g1(:,M_.lead_lag_incidence(1,nb)); GAM2(:, kstate(k,1)) = -a(:,kstate(k,4)); Dg2(:, kstate(k,1), :) = -da(:,kstate(k,4),:); naux = 0; k = find(kstate(:,2) < M_.maximum_endo_lag+1 & kstate(:,4)); kk = find(kstate(:,2) < M_.maximum_endo_lag+1 ); if ~isempty(k), ax(:,k)= -a(:,kstate(k,4)); ax = ax(:,kk); dax(:,k,:)= -da(:,kstate(k,4),:); dax = dax(:,kk,:); naux = size(ax,2); GAM2 = [GAM2 ax]; Dg2 = cat(2,Dg2,dax); end GAM0 = blkdiag(GAM0,eye(naux)); Dg0 = cat(1,Dg0,zeros(naux+nauxe,M_.endo_nbr,param_nbr)); Dg0 = cat(2,Dg0,zeros(m+nauxe,naux,param_nbr)); Dg0 = cat(2,zeros(m+nauxe,nauxe,param_nbr),Dg0); GAM2 = [GAM2 ; A(M_.endo_nbr+1:end,:)]; Dg2 = cat(1,Dg2,zeros(naux+nauxe,m,param_nbr)); Dg2 = cat(2,zeros(m+nauxe,nauxe,param_nbr),Dg2); GAM2 = [zeros(m+nauxe,nauxe) [GAM2; zeros(nauxe,m)]]; GAM0 = [[zeros(m,nauxe);(eye(nauxe))] [GAM0; zeros(nauxe,m)]]; GAM3 = -g1(:,length(yy0)+1:end); % GAM3 = -g1(oo_.dr.order_var,length(yy0)+1:end); GAM3 = [GAM3; zeros(naux+nauxe,size(GAM3,2))]; % Dg3 = -gp(oo_.dr.order_var,length(yy0)+1:end,:); Dg3 = -gp(:,length(yy0)+1:end,:); Dg3 = cat(1,Dg3,zeros(naux+nauxe,size(GAM3,2),param_nbr)); auxe = zeros(0,1); k0 = kstate(find(kstate(:,2) >= M_.maximum_endo_lag+2),:);; i0 = find(k0(:,2) == M_.maximum_endo_lag+2); for i=M_.maximum_endo_lag+3:M_.maximum_endo_lag+2+M_.maximum_endo_lead, i1 = find(k0(:,2) == i); n1 = size(i1,1); j = zeros(n1,1); for j1 = 1:n1 j(j1) = find(k0(i0,1)==k0(i1(j1),1)); end auxe = [auxe; i0(j)]; i0 = i1; end auxe = [(1:size(auxe,1))' auxe(end:-1:1)]; n_ir1 = size(auxe,1); nr = m + n_ir1; GAM1 = [[GAM1 zeros(size(GAM1,1),naux)]; zeros(naux+nauxe,m+nauxe)]; GAM1(m+1:end,:) = sparse(auxe(:,1),auxe(:,2),ones(n_ir1,1),n_ir1,nr); Dg1 = cat(2,Dg1,zeros(M_.endo_nbr,naux,param_nbr)); Dg1 = cat(1,Dg1,zeros(naux+nauxe,m+nauxe,param_nbr)); Ax = A; A1 = A; Bx = B; B1 = B; for j=1:M_.maximum_endo_lead-1, A1 = A1*A; B1 = A*B1; k = find(kstate(:,2) == M_.maximum_endo_lag+2+j ); Ax = [A1(kstate(k,1),:); Ax]; Bx = [B1(kstate(k,1),:); Bx]; end Ax = [zeros(m+nauxe,nauxe) Ax]; A0 = A; A=Ax; clear Ax A1; B0=B; B = Bx; clear Bx B1; m = size(A,1); n = size(B,2); % Dg1 = zeros(m,m,param_nbr); % Dg1(:, nf, :) = -gp(:,M_.lead_lag_incidence(3,nf),:); % Dg0 = gp(:,M_.lead_lag_incidence(2,:),:); % Dg2 = zeros(m,m,param_nbr); % Dg2(:, nb, :) = -gp(:,M_.lead_lag_incidence(1,nb),:); % Dg3 = -gp(:,length(yy0)+1:end,:); if kronflag==1, % kronecker products Dg0=reshape(Dg0,m^2,param_nbr); Dg1=reshape(Dg1,m^2,param_nbr); Dg2=reshape(Dg2,m^2,param_nbr); Dg3=reshape(Dg3,m*n,param_nbr); Om = B*B'; Im = eye(m); Dm = duplication(m); DmPl = inv(Dm'*Dm)*Dm'; Kmm = commutation(m,m); Kmn = commutation(m,n); Da = [eye(m^2),zeros(m^2,m*(m+1)/2)]; Dom = [zeros(m*(m+1)/2,m^2),eye(m*(m+1)/2)]; Df1Dtau = ( kron(Im,GAM0) - kron(A',GAM1) - kron(Im,GAM1*A) )*Da; Df1Dthet = kron(A',Im)*Dg0 - kron( (A')^2,Im)*Dg1 - Dg2; Df2Dtau = DmPl*( kron(GAM0,GAM0) - kron(GAM0,GAM1*A) - kron(GAM1*A,GAM0) + kron(GAM1*A,GAM1*A) )*Dm*Dom - ... DmPl*( kron(GAM0*Om,GAM1) + kron(GAM1,GAM0*Om)*Kmm - kron(GAM1*A*Om,GAM1) - kron(GAM1,GAM1*A*Om)*Kmm )*Da; Df2Dthet = DmPl*( kron(GAM0*Om,Im) + kron(Im,GAM0*Om)*Kmm - kron(Im,GAM1*A*Om)*Kmm - kron(GAM1*A*Om,Im) )*Dg0 - ... DmPl*( kron(GAM0*Om*A',Im) + kron(Im,GAM0*Om*A')*Kmm - kron(Im,GAM1*A*Om*A')*Kmm - kron(GAM1*A*Om*A',Im) )*Dg1 -... DmPl*( kron(GAM3,Im) + kron(Im,GAM3)*Kmn )*Dg3; DfDtau = [Df1Dtau;Df2Dtau]; DfDthet = [Df1Dthet;Df2Dthet]; H = -DfDtau\DfDthet; x = reshape(H(1:m*m,:),m,m,param_nbr); y = reshape(Dm*H(m*m+1:end,:),m,m,param_nbr); x = x(nauxe+1:end,nauxe+1:end,:); y = y(nauxe+1:end,nauxe+1:end,:); m = size(y,1); x = reshape(x,m*m,param_nbr); Dm = duplication(m); DmPl = inv(Dm'*Dm)*Dm'; y = DmPl*reshape(y,m*m,param_nbr); H = [x;y]; H = [ [zeros(M_.endo_nbr,length(indexo)) Hss]; H]; elseif kronflag==-1, % perturbation fun = 'thet2tau'; params0 = M_.params; H = fdjac(fun,[sqrt(diag(M_.Sigma_e(indexo,indexo))); M_.params(indx)],indx,indexo); assignin('base','M_', M_); assignin('base','oo_', oo_); else % generalized sylvester equation % solves a*x+b*x*c=d a = (GAM0-GAM1*A); inva = inv(a); b = -GAM1; c = A; elem = zeros(m,m,param_nbr); d = elem; for j=1:param_nbr, elem(:,:,j) = (Dg0(:,:,j)-Dg1(:,:,j)*A); d(:,:,j) = Dg2(:,:,j)-elem(:,:,j)*A; end xx=sylvester3mr(a,b,c,d); if ~isempty(indexo), dSig = zeros(M_.exo_nbr,M_.exo_nbr); for j=1:length(indexo) dSig(indexo(j),indexo(j)) = 2*sqrt(M_.Sigma_e(indexo(j),indexo(j))); y = B*dSig*B'; y = y(nauxe+1:end,nauxe+1:end); H(:,j) = [zeros((m-nauxe)^2,1); vech(y)]; if nargout>1, dOm(:,:,j) = y; end dSig(indexo(j),indexo(j)) = 0; end end for j=1:param_nbr, x = xx(:,:,j); y = inva * (Dg3(:,:,j)-(elem(:,:,j)-GAM1*x)*B); y = y*M_.Sigma_e*B'+B*M_.Sigma_e*y'; x = x(nauxe+1:end,nauxe+1:end); y = y(nauxe+1:end,nauxe+1:end); if nargout>1, dA(:,:,j+length(indexo)) = x; dOm(:,:,j+length(indexo)) = y; end H(:,j+length(indexo)) = [x(:); vech(y)]; end % for j=1:param_nbr, % disp(['Derivatives w.r.t. ',M_.param_names(indx(j),:),', ',int2str(j),'/',int2str(param_nbr)]) % elem = (Dg0(:,:,j)-Dg1(:,:,j)*A); % d = Dg2(:,:,j)-elem*A; % x=sylvester3(a,b,c,d); % % x=sylvester3a(x,a,b,c,d); % y = inva * (Dg3(:,:,j)-(elem-GAM1*x)*B); % y = y*B'+B*y'; % x = x(nauxe+1:end,nauxe+1:end); % y = y(nauxe+1:end,nauxe+1:end); % H(:,j) = [x(:); vech(y)]; % end H = [[zeros(M_.endo_nbr,length(indexo)) Hss]; H]; end return