function AA = generalized_cholesky(A); %function AA = generalized_cholesky(A); % % Calculates the Gill-Murray generalized choleski decomposition % Input matrix A must be non-singular and symmetric % Copyright (C) 2003 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . n = rows(A); R = eye(n); E = zeros(n,n); norm_A = max(transpose(sum(abs(A)))); gamm = max(abs(diag(A))); delta = max([eps*norm_A;eps]); for j = 1:n theta_j = 0; for i=1:n somme = 0; for k=1:i-1 somme = somme + R(k,i)*R(k,j); end R(i,j) = (A(i,j) - somme)/R(i,i); if (A(i,j) -somme) > theta_j theta_j = A(i,j) - somme; end if i > j R(i,j) = 0; end end somme = 0; for k=1:j-1 somme = somme + R(k,j)^2; end phi_j = A(j,j) - somme; if j+1 <= n xi_j = max(abs(A((j+1):n,j))); else xi_j = abs(A(n,j)); end beta_j = sqrt(max([gamm ; (xi_j/n) ; eps])); if all(delta >= [abs(phi_j);((theta_j^2)/(beta_j^2))]) E(j,j) = delta - phi_j; elseif all(abs(phi_j) >= [((delta^2)/(beta_j^2));delta]) E(j,j) = abs(phi_j) - phi_j; elseif all(((theta_j^2)/(beta_j^2)) >= [delta;abs(phi_j)]) E(j,j) = ((theta_j^2)/(beta_j^2)) - phi_j; end R(j,j) = sqrt(A(j,j) - somme + E(j,j)); end AA = transpose(R)*R;