function pfm = setup_stochastic_perfect_foresight_model_solver(DynareModel,DynareOptions,DynareOutput,IntegrationMethod) % Copyright (C) 2013 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . pfm.lead_lag_incidence = DynareModel.lead_lag_incidence; pfm.ny = DynareModel.endo_nbr; pfm.Sigma = DynareModel.Sigma_e; pfm.Omega = chol(pfm.Sigma,'upper'); % Sigma = Omega'*Omega pfm.number_of_shocks = length(pfm.Sigma); pfm.stochastic_order = DynareOptions.ep.stochastic.order; pfm.max_lag = DynareModel.maximum_endo_lag; if pfm.max_lag > 0 pfm.nyp = nnz(pfm.lead_lag_incidence(1,:)); pfm.iyp = find(pfm.lead_lag_incidence(1,:)>0); else pfm.nyp = 0; pfm.iyp = []; end pfm.ny0 = nnz(pfm.lead_lag_incidence(pfm.max_lag+1,:)); pfm.iy0 = find(pfm.lead_lag_incidence(pfm.max_lag+1,:)>0); if DynareModel.maximum_endo_lead pfm.nyf = nnz(pfm.lead_lag_incidence(pfm.max_lag+2,:)); pfm.iyf = find(pfm.lead_lag_incidence(pfm.max_lag+2,:)>0); else pfm.nyf = 0; pfm.iyf = []; end pfm.nd = pfm.nyp+pfm.ny0+pfm.nyf; pfm.nrc = pfm.nyf+1; pfm.isp = [1:pfm.nyp]; pfm.is = [pfm.nyp+1:pfm.ny+pfm.nyp]; pfm.isf = pfm.iyf+pfm.nyp; pfm.isf1 = [pfm.nyp+pfm.ny+1:pfm.nyf+pfm.nyp+pfm.ny+1]; pfm.iz = [1:pfm.ny+pfm.nyp+pfm.nyf]; pfm.periods = DynareOptions.ep.periods; pfm.steady_state = DynareOutput.steady_state; pfm.params = DynareModel.params; if DynareModel.maximum_endo_lead pfm.i_cols_1 = nonzeros(pfm.lead_lag_incidence(pfm.max_lag+(1:2),:)'); pfm.i_cols_A1 = find(pfm.lead_lag_incidence(pfm.max_lag+(1:2),:)'); else pfm.i_cols_1 = nonzeros(pfm.lead_lag_incidence(pfm.max_lag+1,:)'); pfm.i_cols_A1 = find(pfm.lead_lag_incidence(pfm.max_lag+1,:)'); end if pfm.max_lag > 0 pfm.i_cols_T = nonzeros(pfm.lead_lag_incidence(1:2,:)'); else pfm.i_cols_T = nonzeros(pfm.lead_lag_incidence(1,:)'); end pfm.i_cols_j = 1:pfm.nd; pfm.i_upd = pfm.ny+(1:pfm.periods*pfm.ny); pfm.dynamic_model = str2func([DynareModel.fname,'_dynamic']); pfm.verbose = DynareOptions.ep.verbosity; pfm.maxit_ = DynareOptions.simul.maxit; pfm.tolerance = DynareOptions.dynatol.f; if nargin>3 && DynareOptions.ep.stochastic.order % Compute weights and nodes for the stochastic version of the extended path. switch IntegrationMethod case 'Tensor-Gaussian-Quadrature' % Get the nodes and weights from a univariate Gauss-Hermite quadrature. [nodes,weights] = gauss_hermite_weights_and_nodes(DynareOptions.ep.stochastic.quadrature.nodes); % Replicate the univariate nodes for each innovation and dates, and, if needed, correlate them. nodes = repmat(nodes,1,pfm.number_of_shocks*pfm.stochastic_order)*kron(eye(pfm.stochastic_order),pfm.Omega); % Put the nodes and weights in cells for i=1:pfm.number_of_shocks rr(i) = {nodes(:,i)}; ww(i) = {weights}; end % Build the tensorial grid pfm.nodes = cartesian_product_of_sets(rr{:}); pfm.weights = prod(cartesian_product_of_sets(ww{:}),2); pfm.nnodes = length(pfm.weights); case 'Stroud-Cubature-3' [nodes,weights] = cubature_with_gaussian_weight(pfm.number_of_shocks*pfm.stochastic_order,3,'Stroud') pfm.nodes = kron(eye(pfm.stochastic_order),transpose(Omega))*nodes; pfm.weights = weights; pfm.nnodes = length(pfm.weights); case 'Stroud-Cubature-5' [nodes,weights] = cubature_with_gaussian_weight(pfm.number_of_shocks*pfm.stochastic_order,5,'Stroud') pfm.nodes = kron(eye(pfm.stochastic_order),transpose(Omega))*nodes; pfm.weights = weights; pfm.nnodes = length(weights); otherwise error('setup_stochastic_perfect_foresight_model_solver:: Unknown integration algorithm!') end end