function [R,sig,ci1,ci2,nan_sig] = corrcoef(X,Y,varargin) % CORRCOEF calculates the correlation matrix from pairwise correlations. % The input data can contain missing values encoded with NaN. % Missing data (NaN's) are handled by pairwise deletion [15]. % In order to avoid possible pitfalls, use case-wise deletion or % or check the correlation of NaN's with your data (see below). % A significance test for testing the Hypothesis % 'correlation coefficient R is significantly different to zero' % is included. % % [...] = CORRCOEF(X); % calculates the (auto-)correlation matrix of X % [...] = CORRCOEF(X,Y); % calculates the crosscorrelation between X and Y % % [...] = CORRCOEF(..., Mode); % Mode='Pearson' or 'parametric' [default] % gives the correlation coefficient % also known as the 'product-moment coefficient of correlation' % or 'Pearson''s correlation' [1] % Mode='Spearman' gives 'Spearman''s Rank Correlation Coefficient' % This replaces SPEARMAN.M % Mode='Rank' gives a nonparametric Rank Correlation Coefficient % This is the "Spearman rank correlation with proper handling of ties" % This replaces RANKCORR.M % % [...] = CORRCOEF(..., param1, value1, param2, value2, ... ); % param value % 'Mode' type of correlation % 'Pearson','parametric' % 'Spearman' % 'rank' % 'rows' how do deal with missing values encoded as NaN's. % 'complete': remove all rows with at least one NaN % 'pairwise': [default] % 'alpha' 0.01 : significance level to compute confidence interval % % [R,p,ci1,ci2,nansig] = CORRCOEF(...); % R is the correlation matrix % R(i,j) is the correlation coefficient r between X(:,i) and Y(:,j) % p gives the significance of R % It tests the null hypothesis that the product moment correlation coefficient is zero % using Student's t-test on the statistic t = r*sqrt(N-2)/sqrt(1-r^2) % where N is the number of samples (Statistics, M. Spiegel, Schaum series). % p > alpha: do not reject the Null hypothesis: 'R is zero'. % p < alpha: The alternative hypothesis 'R is larger than zero' is true with probability (1-alpha). % ci1 lower (1-alpha) confidence interval % ci2 upper (1-alpha) confidence interval % If no alpha is provided, the default alpha is 0.01. This can be changed with function flag_implicit_significance. % nan_sig p-value whether H0: 'NaN''s are not correlated' could be correct % if nan_sig < alpha, H1 ('NaNs are correlated') is very likely. % % The result is only valid if the occurence of NaN's is uncorrelated. In % order to avoid this pitfall, the correlation of NaN's should be checked % or case-wise deletion should be applied. % Case-Wise deletion can be implemented % ix = ~any(isnan([X,Y]),2); % [...] = CORRCOEF(X(ix,:),Y(ix,:),...); % % Correlation (non-random distribution) of NaN's can be checked with % [nan_R,nan_sig]=corrcoef(X,isnan(X)) % or [nan_R,nan_sig]=corrcoef([X,Y],isnan([X,Y])) % or [R,p,ci1,ci2] = CORRCOEF(...); % % Further recommandation related to the correlation coefficient: % + LOOK AT THE SCATTERPLOTS to make sure that the relationship is linear % + Correlation is not causation because % it is not clear which parameter is 'cause' and which is 'effect' and % the observed correlation between two variables might be due to the action of other, unobserved variables. % % see also: SUMSKIPNAN, COVM, COV, COR, SPEARMAN, RANKCORR, RANKS, % PARTCORRCOEF, flag_implicit_significance % % REFERENCES: % on the correlation coefficient % [ 1] http://mathworld.wolfram.com/CorrelationCoefficient.html % [ 2] http://www.geography.btinternet.co.uk/spearman.htm % [ 3] Hogg, R. V. and Craig, A. T. Introduction to Mathematical Statistics, 5th ed. New York: Macmillan, pp. 338 and 400, 1995. % [ 4] Lehmann, E. L. and D'Abrera, H. J. M. Nonparametrics: Statistical Methods Based on Ranks, rev. ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 292, 300, and 323, 1998. % [ 5] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 634-637, 1992 % [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html % on the significance test of the correlation coefficient % [11] http://www.met.rdg.ac.uk/cag/STATS/corr.html % [12] http://www.janda.org/c10/Lectures/topic06/L24-significanceR.htm % [13] http://faculty.vassar.edu/lowry/ch4apx.html % [14] http://davidmlane.com/hyperstat/B134689.html % [15] http://www.statsoft.com/textbook/stbasic.html%Correlations % others % [20] http://www.tufts.edu/~gdallal/corr.htm % [21] Fisher transformation http://en.wikipedia.org/wiki/Fisher_transformation % $Id: corrcoef.m 9387 2011-12-15 10:42:14Z schloegl $ % Copyright (C) 2000-2004,2008,2009,2011 by Alois Schloegl % Copyright (C) 2014-2017 Dynare Team % This function is part of the NaN-toolbox % http://pub.ist.ac.at/~schloegl/matlab/NaN/ % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see . % Features: % + handles missing values (encoded as NaN's) % + pairwise deletion of missing data % + checks independence of missing values (NaNs) % + parametric and non-parametric (rank) correlation % + Pearson's correlation % + Spearman's rank correlation % + Rank correlation (non-parametric, Spearman rank correlation with proper handling of ties) % + is fast, using an efficient algorithm O(n.log(n)) for calculating the ranks % + significance test for null-hypthesis: r=0 % + confidence interval included % - rank correlation works for cell arrays, too (no check for missing values). % + compatible with Octave and Matlab global FLAG_NANS_OCCURED; NARG = nargout; % needed because nargout is not reentrant in Octave, and corrcoef is recursive mode = []; if nargin==1 Y = []; Mode='Pearson'; elseif nargin==0 fprintf(2,'Error CORRCOEF: Missing argument(s)\n'); elseif nargin>1 if ischar(Y) varg = [Y,varargin]; Y=[]; else varg = varargin; end if length(varg)<1 Mode = 'Pearson'; elseif length(varg)==1 Mode = varg{1}; else for k = 2:2:length(varg) mode = setfield(mode,lower(varg{k-1}),varg{k}); end if isfield(mode,'mode') Mode = mode.mode; end end end if isempty(Mode), Mode='pearson'; end Mode=[Mode,' ']; FLAG_WARNING = warning; % save warning status warning('off'); [r1,c1]=size(X); if ~isempty(Y) [r2,c2]=size(Y); if r1~=r2 fprintf(2,'Error CORRCOEF: X and Y must have the same number of observations (rows).\n'); return end NN = real(~isnan(X)')*real(~isnan(Y)); else [r2,c2]=size(X); NN = real(~isnan(X)')*real(~isnan(X)); end %%%%% generate combinations using indices for pairwise calculation of the correlation YESNAN = any(isnan(X(:))) | any(isnan(Y(:))); if YESNAN FLAG_NANS_OCCURED=(1==1); if isfield(mode,'rows') if strcmp(mode.rows,'complete') ix = ~any([X,Y],2); X = X(ix,:); if ~isempty(Y) Y = Y(ix,:); end YESNAN = 0; NN = size(X,1); elseif strcmp(mode.rows,'all') fprintf(1,'Warning: data contains NaNs, rows=pairwise is used.'); %%NN(NN < size(X,1)) = NaN; elseif strcmp(mode.rows,'pairwise') %%% default end end end if isempty(Y) IX = ones(c1)-diag(ones(c1,1)); [jx, jy ] = find(IX); [jxo,jyo] = find(IX); R = eye(c1); else IX = sparse([],[],[],c1+c2,c1+c2,c1*c2); IX(1:c1,c1+(1:c2)) = 1; [jx,jy] = find(IX); IX = ones(c1,c2); [jxo,jyo] = find(IX); R = zeros(c1,c2); end if strcmp(lower(Mode(1:7)),'pearson') % see http://mathworld.wolfram.com/CorrelationCoefficient.html if ~YESNAN [S,N,SSQ] = sumskipnan(X,1); if ~isempty(Y) [S2,N2,SSQ2] = sumskipnan(Y,1); CC = X'*Y; M1 = S./N; M2 = S2./N2; cc = CC./NN - M1'*M2; R = cc./sqrt((SSQ./N-M1.*M1)'*(SSQ2./N2-M2.*M2)); else CC = X'*X; M = S./N; cc = CC./NN - M'*M; v = SSQ./N - M.*M; %max(N-1,0); R = cc./sqrt(v'*v); end else if ~isempty(Y) X = [X,Y]; end for k = 1:length(jx) %ik = ~any(isnan(X(:,[jx(k),jy(k)])),2); ik = ~isnan(X(:,jx(k))) & ~isnan(X(:,jy(k))); [s,n,s2] = sumskipnan(X(ik,[jx(k),jy(k)]),1); v = (s2-s.*s./n)./n; cc = X(ik,jx(k))'*X(ik,jy(k)); cc = cc/n(1) - prod(s./n); %r(k) = cc./sqrt(prod(v)); R(jxo(k),jyo(k)) = cc./sqrt(prod(v)); end end elseif strcmp(lower(Mode(1:4)),'rank') % see [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html if ~YESNAN if isempty(Y) R = corrcoef(ranks(X)); else R = corrcoef(ranks(X),ranks(Y)); end else if ~isempty(Y) X = [X,Y]; end for k = 1:length(jx) %ik = ~any(isnan(X(:,[jx(k),jy(k)])),2); ik = ~isnan(X(:,jx(k))) & ~isnan(X(:,jy(k))); il = ranks(X(ik,[jx(k),jy(k)])); R(jxo(k),jyo(k)) = corrcoef(il(:,1),il(:,2)); end X = ranks(X); end elseif strcmp(lower(Mode(1:8)),'spearman') % see [ 6] http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html if ~isempty(Y) X = [X,Y]; end n = repmat(nan,c1,c2); if ~YESNAN iy = ranks(X); % calculates ranks; for k = 1:length(jx) [R(jxo(k),jyo(k)),n(jxo(k),jyo(k))] = sumskipnan((iy(:,jx(k)) - iy(:,jy(k))).^2); % NN is the number of non-missing values end else for k = 1:length(jx) %ik = ~any(isnan(X(:,[jx(k),jy(k)])),2); ik = ~isnan(X(:,jx(k))) & ~isnan(X(:,jy(k))); il = ranks(X(ik,[jx(k),jy(k)])); % NN is the number of non-missing values [R(jxo(k),jyo(k)),n(jxo(k),jyo(k))] = sumskipnan((il(:,1) - il(:,2)).^2); end X = ranks(X); end R = 1 - 6 * R ./ (n.*(n.*n-1)); elseif strcmp(lower(Mode(1:7)),'partial') fprintf(2,'Error CORRCOEF: use PARTCORRCOEF \n',Mode); return elseif strcmp(lower(Mode(1:7)),'kendall') fprintf(2,'Error CORRCOEF: mode ''%s'' not implemented yet.\n',Mode); return else fprintf(2,'Error CORRCOEF: unknown mode ''%s''\n',Mode); end if (NARG<2) warning(FLAG_WARNING); % restore warning status return end % CONFIDENCE INTERVAL if isfield(mode,'alpha') alpha = mode.alpha; elseif exist('flag_implicit_significance','file') alpha = flag_implicit_significance; else alpha = 0.01; end % fprintf(1,'CORRCOEF: confidence interval is based on alpha=%f\n',alpha); % SIGNIFICANCE TEST R(isnan(R))=0; tmp = 1 - R.*R; tmp(tmp<0) = 0; % prevent tmp<0 i.e. imag(t)~=0 t = R.*sqrt(max(NN-2,0)./tmp); if exist('t_cdf','file') sig = t_cdf(t,NN-2); elseif exist('tcdf','file')>1 sig = tcdf(t,NN-2); else fprintf('CORRCOEF: significance test not completed because of missing TCDF-function\n') sig = repmat(nan,size(R)); end sig = 2 * min(sig,1 - sig); if NARG<3 warning(FLAG_WARNING); % restore warning status return end tmp = R; %tmp(ix1 | ix2) = nan; % avoid division-by-zero warning z = log((1+tmp)./(1-tmp))/2; % Fisher transformation [21] %sz = 1./sqrt(NN-3); % standard error of z sz = sqrt(2)*erfinv(1-alpha)./sqrt(NN-3); % confidence interval for alpha of z ci1 = tanh(z-sz); ci2 = tanh(z+sz); %ci1(isnan(ci1))=R(isnan(ci1)); % in case of isnan(ci), the interval limits are exactly the R value %ci2(isnan(ci2))=R(isnan(ci2)); if (NARG<5) || ~YESNAN nan_sig = repmat(NaN,size(R)); warning(FLAG_WARNING); % restore warning status return end %%%%% ----- check independence of NaNs (missing values) ----- [nan_R, nan_sig] = corrcoef(X,double(isnan(X))); % remove diagonal elements, because these have not any meaning % nan_sig(isnan(nan_R)) = nan; % remove diagonal elements, because these have not any meaning % nan_R(isnan(nan_R)) = 0; if 0, any(nan_sig(:) < alpha) tmp = nan_sig(:); % Hack to skip NaN's in MIN(X) min_sig = min(tmp(~isnan(tmp))); % Necessary, because Octave returns NaN rather than min(X) for min(NaN,X) fprintf(1,'CORRCOFF Warning: Missing Values (i.e. NaNs) are not independent of data (p-value=%f)\n', min_sig); fprintf(1,' Its recommended to remove all samples (i.e. rows) with any missing value (NaN).\n'); fprintf(1,' The null-hypotheses (NaNs are uncorrelated) is rejected for the following parameter pair(s).\n'); [ix,iy] = find(nan_sig < alpha); disp([ix,iy]) end %%%%% ----- end of independence check ------ warning(FLAG_WARNING); % restore warning status