// --+ options: json=compute, stochastic +-- var x1 x2 x1bar x2bar z y gg; varexo ex1 ex2 ex1bar ex2bar ez ey g; parameters rho_1 rho_2 a_x1_0 a_x1_1 a_x1_2 a_x1_x2_1 a_x1_x2_2 a_x2_0 a_x2_1 a_x2_2 a_x2_x1_1 a_x2_x1_2 e_c_m c_z_1 c_z_2 beta ; rho_1 = .9; rho_2 = -.2; a_x1_0 = -.9; a_x1_1 = .4; a_x1_2 = .3; a_x1_x2_1 = .1; a_x1_x2_2 = .2; a_x2_0 = -.9; a_x2_1 = .2; a_x2_2 = -.1; a_x2_x1_1 = -.1; a_x2_x1_2 = .2; beta = .2; e_c_m = .5; c_z_1 = .2; c_z_2 = -.1; trend_component_model(model_name=toto, eqtags=['eq:x1', 'eq:x2', 'eq:x1bar', 'eq:x2bar'], targets=['eq:x1bar', 'eq:x2bar']); pac_model(auxiliary_model_name=toto, discount=beta, growth=0.5*gg(-1)+beta+ex1, model_name=pacman); model; [name='eq:gg'] gg = g; [name='eq:y'] y = rho_1*y(-1) + rho_2*y(-2) + ey; [name='eq:x1'] diff(x1) = a_x1_0*(x1(-1)-x1bar(-1)) + a_x1_1*diff(x1(-1)) + a_x1_2*diff(x1(-2)) + a_x1_x2_1*diff(x2(-1)) + a_x1_x2_2*diff(x2(-2)) + ex1; [name='eq:x2'] diff(x2) = a_x2_0*(x2(-1)-x2bar(-1)) + a_x2_1*diff(x1(-1)) + a_x2_2*diff(x1(-2)) + a_x2_x1_1*diff(x2(-1)) + a_x2_x1_2*diff(x2(-2)) + ex2; [name='eq:x1bar'] x1bar = x1bar(-1) + ex1bar; [name='eq:x2bar'] x2bar = x2bar(-1) + ex2bar; [name='zpac'] diff(z) = e_c_m*(x1(-1)-z(-1)) + c_z_1*diff(z(-1)) + c_z_2*diff(z(-2)) + pac_expectation(pacman) + ez; end; // Initialize the PAC model (build the Companion VAR representation for the auxiliary model). pac.initialize('pacman'); // Update the parameters of the PAC expectation model (h0 and h1 vectors). pac.update.expectation('pacman'); // Set initial conditions to zero. Please use more sensible values if any... initialconditions = dseries(zeros(10, M_.endo_nbr+M_.exo_nbr), 2000Q1, vertcat(M_.endo_names,M_.exo_names)); // Simulate the model for 5000 periods TrueData = simul_backward_model(initialconditions, 5000); // NLS estimation // Define a structure describing the parameters to be estimated (with initial conditions). clear eparams eparams.e_c_m = .5; eparams.c_z_1 = .2; eparams.c_z_2 =-.1; edata = TrueData; edata.ez = dseries(NaN(TrueData.nobs, 1), 2000Q1, 'ez'); pac.estimate.nls('zpac', eparams, edata, 2005Q1:2000Q1+200, 'lsqnonlin'); e_c_m_nls = M_.params(strmatch('e_c_m', M_.param_names, 'exact')); c_z_1_nls = M_.params(strmatch('c_z_1', M_.param_names, 'exact')); c_z_2_nls = M_.params(strmatch('c_z_2', M_.param_names, 'exact')); resid_nls = oo_.pac.pacman.residual; fprintf('Estimate of e_c_m: %f \n', e_c_m_nls) fprintf('Estimate of c_z_1: %f \n', c_z_1_nls) fprintf('Estimate of c_z_2: %f \n', c_z_2_nls) skipline(2) // Iterative OLS estimation using estimates from NLS // Define a structure describing the parameters to be estimated (with initial conditions). clear eparams eparams.e_c_m = e_c_m_nls; eparams.c_z_1 = c_z_1_nls; eparams.c_z_2 = c_z_2_nls; // Define the dataset used for estimation edata = TrueData; edata.ez = dseries(NaN(TrueData.nobs, 1), 2000Q1, 'ez'); pac.estimate.iterative_ols('zpac', eparams, edata, 2005Q1:2000Q1+200); // Test printing of PAC expectations pac.print('pacman','zpac'); // Print equations where the variable appears in search('x1bar') search('x2bar', 'withparamvalues') e_c_m_iterative_ols = M_.params(strmatch('e_c_m', M_.param_names, 'exact')); c_z_1_iterative_ols = M_.params(strmatch('c_z_1', M_.param_names, 'exact')); c_z_2_iterative_ols = M_.params(strmatch('c_z_2', M_.param_names, 'exact')); resid_iterative_ols = oo_.pac.pacman.residual; fprintf('Estimate of e_c_m: %f \n', e_c_m_iterative_ols) fprintf('Estimate of c_z_1: %f \n', c_z_1_iterative_ols) fprintf('Estimate of c_z_2: %f \n', c_z_2_iterative_ols) difference = abs(resid_nls-resid_iterative_ols); if any(difference.data > 1e-4) error('Iterative OLS and NLS do not provide consistent results.') end