function [PredictedStateMean,PredictedStateVarianceSquareRoot,StateVectorMean,StateVectorVarianceSquareRoot] = gaussian_filter_bank(ReducedForm,obs,StateVectorMean,StateVectorVarianceSquareRoot,Q_lower_triangular_cholesky,H_lower_triangular_cholesky,H,DynareOptions) % % Computes the proposal with a gaussian approximation for importance % sampling % This proposal is a gaussian distribution calculated à la Kalman % % INPUTS % reduced_form_model [structure] Matlab's structure describing the reduced form model. % reduced_form_model.measurement.H [double] (pp x pp) variance matrix of measurement errors. % reduced_form_model.state.Q [double] (qq x qq) variance matrix of state errors. % reduced_form_model.state.dr [structure] output of resol.m. % Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables. % % OUTPUTS % LIK [double] scalar, likelihood % lik [double] vector, density of observations in each period. % % REFERENCES % % NOTES % The vector "lik" is used to evaluate the jacobian of the likelihood. % Copyright (C) 2009-2010 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . persistent init_flag2 mf0 mf1 persistent number_of_state_variables number_of_observed_variables persistent number_of_structural_innovations % Set local state space model (first-order approximation). ghx = ReducedForm.ghx; ghu = ReducedForm.ghu; % Set local state space model (second-order approximation). ghxx = ReducedForm.ghxx; ghuu = ReducedForm.ghuu; ghxu = ReducedForm.ghxu; if any(any(isnan(ghx))) || any(any(isnan(ghu))) || any(any(isnan(ghxx))) || any(any(isnan(ghuu))) || any(any(isnan(ghxu))) || ... any(any(isinf(ghx))) || any(any(isinf(ghu))) || any(any(isinf(ghxx))) || any(any(isinf(ghuu))) || any(any(isinf(ghxu))) ... any(any(abs(ghx)>1e4)) || any(any(abs(ghu)>1e4)) || any(any(abs(ghxx)>1e4)) || any(any(abs(ghuu)>1e4)) || any(any(abs(ghxu)>1e4)) ghx ghu ghxx ghuu ghxu end constant = ReducedForm.constant; state_variables_steady_state = ReducedForm.state_variables_steady_state; % Set persistent variables. if isempty(init_flag2) mf0 = ReducedForm.mf0; mf1 = ReducedForm.mf1; number_of_state_variables = length(mf0); number_of_observed_variables = length(mf1); number_of_structural_innovations = length(ReducedForm.Q); init_flag2 = 1; end if strcmpi(DynareOptions.particle.IS_approximation_method,'cubature') || strcmpi(DynareOptions.particle.IS_approximation_method,'monte-carlo') [nodes,weights] = spherical_radial_sigma_points(number_of_state_variables+number_of_structural_innovations) ; weights_c = weights ; end if strcmpi(DynareOptions.particle.IS_approximation_method,'quadrature') [nodes,weights] = nwspgr('GQN',number_of_state_variables+number_of_structural_innovations,DynareOptions.particle.smolyak_accuracy) ; weights_c = weights ; end if strcmpi(DynareOptions.particle.IS_approximation_method,'unscented') [nodes,weights,weights_c] = unscented_sigma_points(number_of_state_variables+number_of_structural_innovations,DynareOptions) ; end xbar = [StateVectorMean ; zeros(number_of_structural_innovations,1) ] ; sqr_Px = [ [ StateVectorVarianceSquareRoot zeros(number_of_state_variables,number_of_structural_innovations) ] ; [ zeros(number_of_structural_innovations,number_of_state_variables) Q_lower_triangular_cholesky ] ] ; sigma_points = bsxfun(@plus,xbar,sqr_Px*(nodes')) ; StateVectors = sigma_points(1:number_of_state_variables,:) ; epsilon = sigma_points(number_of_state_variables+1:number_of_state_variables+number_of_structural_innovations,:) ; yhat = bsxfun(@minus,StateVectors,state_variables_steady_state); tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2); PredictedStateMean = tmp(mf0,:)*weights ; PredictedObservedMean = tmp(mf1,:)*weights; if strcmpi(DynareOptions.particle.IS_approximation_method,'cubature') || strcmpi(DynareOptions.particle.IS_approximation_method,'monte-carlo') PredictedStateMean = sum(PredictedStateMean,2) ; PredictedObservedMean = sum(PredictedObservedMean,2) ; dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean)'.*sqrt(weights) ; dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean)'.*sqrt(weights); PredictedStateVarianceSquareRoot = chol(dState'*dState)'; big_mat = [dObserved dState ; [H_lower_triangular_cholesky zeros(number_of_observed_variables,number_of_state_variables)] ] ; [mat1,mat] = qr2(big_mat,0) ; mat = mat' ; clear('mat1'); PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables,1:number_of_observed_variables) ; CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables) ; StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables)) ; PredictionError = obs - PredictedObservedMean ; StateVectorMean = PredictedStateMean + (CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*PredictionError ; end if strcmpi(DynareOptions.particle.IS_approximation_method,'quadrature') || strcmpi(DynareOptions.particle.IS_approximation_method,'unscented') dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean); dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); PredictedStateVariance = dState*diag(weights_c)*dState'; PredictedObservedVariance = dObserved*diag(weights_c)*dObserved' + H; PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved'; PredictedStateVarianceSquareRoot = chol(PredictedStateVariance)'; PredictionError = obs - PredictedObservedMean; KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance ; StateVectorMean = PredictedStateMean + KalmanFilterGain*PredictionError; StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain'; StateVectorVariance = .5*(StateVectorVariance+StateVectorVariance'); StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)'; end