function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,DynareOptions) % Evaluates the likelihood of a nonlinear model with a particle filter allowing eventually resampling. % % INPUTS % ReducedForm [structure] Matlab's structure describing the reduced form model. % ReducedForm.measurement.H [double] (pp x pp) variance matrix of measurement errors. % ReducedForm.state.Q [double] (qq x qq) variance matrix of state errors. % ReducedForm.state.dr [structure] output of resol.m. % Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables. % start [integer] scalar, likelihood evaluation starts at 'start'. % mf [integer] pp*1 vector of indices. % number_of_particles [integer] scalar. % % OUTPUTS % LIK [double] scalar, likelihood % lik [double] vector, density of observations in each period. % % REFERENCES % % NOTES % The vector "lik" is used to evaluate the jacobian of the likelihood. % Copyright (C) 2011-2013 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . persistent init_flag mf0 mf1 number_of_particles persistent sample_size number_of_state_variables number_of_observed_variables number_of_structural_innovations % Set default if isempty(start) start = 1; end % Set flag for prunning pruning = DynareOptions.particle.pruning; % Get steady state and mean. steadystate = ReducedForm.steadystate; constant = ReducedForm.constant; state_variables_steady_state = ReducedForm.state_variables_steady_state; % Set persistent variables. if isempty(init_flag) mf0 = ReducedForm.mf0; mf1 = ReducedForm.mf1; sample_size = size(Y,2); number_of_state_variables = length(mf0); number_of_observed_variables = length(mf1); number_of_structural_innovations = length(ReducedForm.Q); number_of_particles = DynareOptions.particle.number_of_particles; init_flag = 1; end % Set local state space model (first order approximation). ghx = ReducedForm.ghx; ghu = ReducedForm.ghu; % Set local state space model (second order approximation). ghxx = ReducedForm.ghxx; ghuu = ReducedForm.ghuu; ghxu = ReducedForm.ghxu; % Get covariance matrices Q = ReducedForm.Q; H = ReducedForm.H; if isempty(H) H = 0; end % Get initial condition for the state vector. StateVectorMean = ReducedForm.StateVectorMean; StateVectorVarianceSquareRoot = reduced_rank_cholesky(ReducedForm.StateVectorVariance)'; state_variance_rank = size(StateVectorVarianceSquareRoot,2); Q_lower_triangular_cholesky = chol(Q)'; if pruning StateVectorMean_ = StateVectorMean; StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot; end % Set seed for randn(). set_dynare_seed('default'); % Initialization of the likelihood. const_lik = log(2*pi)*number_of_observed_variables; lik = NaN(sample_size,1); LIK = NaN; % Initialization of the weights across particles. weights = ones(1,number_of_particles)/number_of_particles ; StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean); if pruning StateVectors_ = StateVectors; end for t=1:sample_size yhat = bsxfun(@minus,StateVectors,state_variables_steady_state); if pruning yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state); [tmp, tmp_] = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2); else tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2); end PredictedObservedMean = weights*(tmp(mf1,:)'); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean'); PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H; wtilde = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))) ; tau_tilde = weights.*wtilde ; sum_tau_tilde = sum(tau_tilde) ; %var_wtilde = wtilde-sum_tau_tilde ; %var_wtilde = var_wtilde'*var_wtilde/(number_of_particles-1) ; lik(t) = log(sum_tau_tilde) ; %+ .5*var_wtilde/(number_of_particles*(sum_tau_tilde*sum_tau_tilde)) ; tau_tilde = tau_tilde/sum_tau_tilde; if pruning temp = resample([yhat' yhat_'],tau_tilde',DynareOptions); yhat = temp(:,1:number_of_state_variables)' ; yhat_ = temp(:,number_of_state_variables+1:2*number_of_state_variables)' ; else yhat = resample(yhat',tau_tilde',DynareOptions)' ; end if pruning [tmp, tmp_] = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2); else tmp = local_state_space_iteration_2(yhat,zeros(number_of_structural_innovations,number_of_particles),ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2); end PredictedObservedMean = weights*(tmp(mf1,:)'); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean'); PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H; wtilde = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))) ; epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles); if pruning [tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,DynareOptions.threads.local_state_space_iteration_2); StateVectors_ = tmp_(mf0,:); else tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2); end StateVectors = tmp(mf0,:); PredictedObservedMean = mean(tmp(mf1,:),2); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles + H; lnw = exp(-.5*(const_lik+log(det(PredictedObservedVariance))+sum(PredictionError.*(PredictedObservedVariance\PredictionError),1))); wtilde = lnw./wtilde; weights = wtilde/sum(wtilde); end LIK = -sum(lik(start:end));