SUBROUTINE SB10FD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB, $ C, LDC, D, LDD, AK, LDAK, BK, LDBK, CK, LDCK, $ DK, LDDK, RCOND, TOL, IWORK, DWORK, LDWORK, $ BWORK, INFO ) C C SLICOT RELEASE 5.0. C C Copyright (c) 2002-2009 NICONET e.V. C C This program is free software: you can redistribute it and/or C modify it under the terms of the GNU General Public License as C published by the Free Software Foundation, either version 2 of C the License, or (at your option) any later version. C C This program is distributed in the hope that it will be useful, C but WITHOUT ANY WARRANTY; without even the implied warranty of C MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the C GNU General Public License for more details. C C You should have received a copy of the GNU General Public License C along with this program. If not, see C . C C PURPOSE C C To compute the matrices of an H-infinity (sub)optimal n-state C controller C C | AK | BK | C K = |----|----|, C | CK | DK | C C using modified Glover's and Doyle's 1988 formulas, for the system C C | A | B1 B2 | | A | B | C P = |----|---------| = |---|---| C | C1 | D11 D12 | | C | D | C | C2 | D21 D22 | C C and for a given value of gamma, where B2 has as column size the C number of control inputs (NCON) and C2 has as row size the number C of measurements (NMEAS) being provided to the controller. C C It is assumed that C C (A1) (A,B2) is stabilizable and (C2,A) is detectable, C C (A2) D12 is full column rank and D21 is full row rank, C C (A3) | A-j*omega*I B2 | has full column rank for all omega, C | C1 D12 | C C (A4) | A-j*omega*I B1 | has full row rank for all omega. C | C2 D21 | C C ARGUMENTS C C Input/Output Parameters C C N (input) INTEGER C The order of the system. N >= 0. C C M (input) INTEGER C The column size of the matrix B. M >= 0. C C NP (input) INTEGER C The row size of the matrix C. NP >= 0. C C NCON (input) INTEGER C The number of control inputs (M2). M >= NCON >= 0, C NP-NMEAS >= NCON. C C NMEAS (input) INTEGER C The number of measurements (NP2). NP >= NMEAS >= 0, C M-NCON >= NMEAS. C C GAMMA (input) DOUBLE PRECISION C The value of gamma. It is assumed that gamma is C sufficiently large so that the controller is admissible. C GAMMA >= 0. C C A (input) DOUBLE PRECISION array, dimension (LDA,N) C The leading N-by-N part of this array must contain the C system state matrix A. C C LDA INTEGER C The leading dimension of the array A. LDA >= max(1,N). C C B (input) DOUBLE PRECISION array, dimension (LDB,M) C The leading N-by-M part of this array must contain the C system input matrix B. C C LDB INTEGER C The leading dimension of the array B. LDB >= max(1,N). C C C (input) DOUBLE PRECISION array, dimension (LDC,N) C The leading NP-by-N part of this array must contain the C system output matrix C. C C LDC INTEGER C The leading dimension of the array C. LDC >= max(1,NP). C C D (input) DOUBLE PRECISION array, dimension (LDD,M) C The leading NP-by-M part of this array must contain the C system input/output matrix D. C C LDD INTEGER C The leading dimension of the array D. LDD >= max(1,NP). C C AK (output) DOUBLE PRECISION array, dimension (LDAK,N) C The leading N-by-N part of this array contains the C controller state matrix AK. C C LDAK INTEGER C The leading dimension of the array AK. LDAK >= max(1,N). C C BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS) C The leading N-by-NMEAS part of this array contains the C controller input matrix BK. C C LDBK INTEGER C The leading dimension of the array BK. LDBK >= max(1,N). C C CK (output) DOUBLE PRECISION array, dimension (LDCK,N) C The leading NCON-by-N part of this array contains the C controller output matrix CK. C C LDCK INTEGER C The leading dimension of the array CK. C LDCK >= max(1,NCON). C C DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS) C The leading NCON-by-NMEAS part of this array contains the C controller input/output matrix DK. C C LDDK INTEGER C The leading dimension of the array DK. C LDDK >= max(1,NCON). C C RCOND (output) DOUBLE PRECISION array, dimension (4) C RCOND(1) contains the reciprocal condition number of the C control transformation matrix; C RCOND(2) contains the reciprocal condition number of the C measurement transformation matrix; C RCOND(3) contains an estimate of the reciprocal condition C number of the X-Riccati equation; C RCOND(4) contains an estimate of the reciprocal condition C number of the Y-Riccati equation. C C Tolerances C C TOL DOUBLE PRECISION C Tolerance used for controlling the accuracy of the applied C transformations for computing the normalized form in C SLICOT Library routine SB10PD. Transformation matrices C whose reciprocal condition numbers are less than TOL are C not allowed. If TOL <= 0, then a default value equal to C sqrt(EPS) is used, where EPS is the relative machine C precision. C C Workspace C C IWORK INTEGER array, dimension (LIWORK), where C LIWORK = max(2*max(N,M-NCON,NP-NMEAS,NCON),N*N) C C DWORK DOUBLE PRECISION array, dimension (LDWORK) C On exit, if INFO = 0, DWORK(1) contains the optimal C LDWORK. C C LDWORK INTEGER C The dimension of the array DWORK. C LDWORK >= N*M + NP*(N+M) + M2*M2 + NP2*NP2 + C max(1,LW1,LW2,LW3,LW4,LW5,LW6), where C LW1 = (N+NP1+1)*(N+M2) + max(3*(N+M2)+N+NP1,5*(N+M2)), C LW2 = (N+NP2)*(N+M1+1) + max(3*(N+NP2)+N+M1,5*(N+NP2)), C LW3 = M2 + NP1*NP1 + max(NP1*max(N,M1),3*M2+NP1,5*M2), C LW4 = NP2 + M1*M1 + max(max(N,NP1)*M1,3*NP2+M1,5*NP2), C LW5 = 2*N*N + N*(M+NP) + C max(1,M*M + max(2*M1,3*N*N+max(N*M,10*N*N+12*N+5)), C NP*NP + max(2*NP1,3*N*N + C max(N*NP,10*N*N+12*N+5))), C LW6 = 2*N*N + N*(M+NP) + C max(1, M2*NP2 + NP2*NP2 + M2*M2 + C max(D1*D1 + max(2*D1, (D1+D2)*NP2), C D2*D2 + max(2*D2, D2*M2), 3*N, C N*(2*NP2 + M2) + C max(2*N*M2, M2*NP2 + C max(M2*M2+3*M2, NP2*(2*NP2+ C M2+max(NP2,N)))))), C with D1 = NP1 - M2, D2 = M1 - NP2, C NP1 = NP - NP2, M1 = M - M2. C For good performance, LDWORK must generally be larger. C Denoting Q = max(M1,M2,NP1,NP2), an upper bound is C 2*Q*(3*Q+2*N)+max(1,(N+Q)*(N+Q+6),Q*(Q+max(N,Q,5)+1), C 2*N*(N+2*Q)+max(1,4*Q*Q+ C max(2*Q,3*N*N+max(2*N*Q,10*N*N+12*N+5)), C Q*(3*N+3*Q+max(2*N,4*Q+max(N,Q))))). C C BWORK LOGICAL array, dimension (2*N) C C Error Indicator C C INFO INTEGER C = 0: successful exit; C < 0: if INFO = -i, the i-th argument had an illegal C value; C = 1: if the matrix | A-j*omega*I B2 | had not full C | C1 D12 | C column rank in respect to the tolerance EPS; C = 2: if the matrix | A-j*omega*I B1 | had not full row C | C2 D21 | C rank in respect to the tolerance EPS; C = 3: if the matrix D12 had not full column rank in C respect to the tolerance TOL; C = 4: if the matrix D21 had not full row rank in respect C to the tolerance TOL; C = 5: if the singular value decomposition (SVD) algorithm C did not converge (when computing the SVD of one of C the matrices |A B2 |, |A B1 |, D12 or D21). C |C1 D12| |C2 D21| C = 6: if the controller is not admissible (too small value C of gamma); C = 7: if the X-Riccati equation was not solved C successfully (the controller is not admissible or C there are numerical difficulties); C = 8: if the Y-Riccati equation was not solved C successfully (the controller is not admissible or C there are numerical difficulties); C = 9: if the determinant of Im2 + Tu*D11HAT*Ty*D22 is C zero [3]. C C METHOD C C The routine implements the Glover's and Doyle's 1988 formulas [1], C [2] modified to improve the efficiency as described in [3]. C C REFERENCES C C [1] Glover, K. and Doyle, J.C. C State-space formulae for all stabilizing controllers that C satisfy an Hinf norm bound and relations to risk sensitivity. C Systems and Control Letters, vol. 11, pp. 167-172, 1988. C C [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and C Smith, R. C mu-Analysis and Synthesis Toolbox. C The MathWorks Inc., Natick, Mass., 1995. C C [3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M. C Fortran 77 routines for Hinf and H2 design of continuous-time C linear control systems. C Rep. 98-14, Department of Engineering, Leicester University, C Leicester, U.K., 1998. C C NUMERICAL ASPECTS C C The accuracy of the result depends on the condition numbers of the C input and output transformations and on the condition numbers of C the two Riccati equations, as given by the values of RCOND(1), C RCOND(2), RCOND(3) and RCOND(4), respectively. C C CONTRIBUTORS C C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998. C C REVISIONS C C V. Sima, Research Institute for Informatics, Bucharest, May 1999, C Sept. 1999, Feb. 2000. C C KEYWORDS C C Algebraic Riccati equation, H-infinity optimal control, robust C control. C C ****************************************************************** C C .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) C .. C .. Scalar Arguments .. INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, $ LDDK, LDWORK, M, N, NCON, NMEAS, NP DOUBLE PRECISION GAMMA, TOL C .. C .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ), $ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ), $ D( LDD, * ), DK( LDDK, * ), DWORK( * ), $ RCOND( 4 ) C .. C .. Local Scalars .. INTEGER INFO2, IWC, IWD, IWF, IWH, IWRK, IWTU, IWTY, $ IWX, IWY, LW1, LW2, LW3, LW4, LW5, LW6, $ LWAMAX, M1, M2, MINWRK, ND1, ND2, NP1, NP2 DOUBLE PRECISION TOLL C .. C .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH C .. C .. External Subroutines .. EXTERNAL DLACPY, SB10PD, SB10QD, SB10RD, XERBLA C .. C .. Intrinsic Functions .. INTRINSIC DBLE, INT, MAX, SQRT C .. C .. Executable Statements .. C C Decode and Test input parameters. C M1 = M - NCON M2 = NCON NP1 = NP - NMEAS NP2 = NMEAS C INFO = 0 IF( N.LT.0 ) THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -2 ELSE IF( NP.LT.0 ) THEN INFO = -3 ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN INFO = -4 ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN INFO = -5 ELSE IF( GAMMA.LT.ZERO ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -10 ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN INFO = -12 ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN INFO = -14 ELSE IF( LDAK.LT.MAX( 1, N ) ) THEN INFO = -16 ELSE IF( LDBK.LT.MAX( 1, N ) ) THEN INFO = -18 ELSE IF( LDCK.LT.MAX( 1, M2 ) ) THEN INFO = -20 ELSE IF( LDDK.LT.MAX( 1, M2 ) ) THEN INFO = -22 ELSE C C Compute workspace. C ND1 = NP1 - M2 ND2 = M1 - NP2 LW1 = ( N + NP1 + 1 )*( N + M2 ) + MAX( 3*( N + M2 ) + N + NP1, $ 5*( N + M2 ) ) LW2 = ( N + NP2 )*( N + M1 + 1 ) + MAX( 3*( N + NP2 ) + N + $ M1, 5*( N + NP2 ) ) LW3 = M2 + NP1*NP1 + MAX( NP1*MAX( N, M1 ), 3*M2 + NP1, 5*M2 ) LW4 = NP2 + M1*M1 + MAX( MAX( N, NP1 )*M1, 3*NP2 + M1, 5*NP2 ) LW5 = 2*N*N + N*( M + NP ) + $ MAX( 1, M*M + MAX( 2*M1, 3*N*N + $ MAX( N*M, 10*N*N + 12*N + 5 ) ), $ NP*NP + MAX( 2*NP1, 3*N*N + $ MAX( N*NP, 10*N*N + 12*N + 5 ) ) ) LW6 = 2*N*N + N*( M + NP ) + $ MAX( 1, M2*NP2 + NP2*NP2 + M2*M2 + $ MAX( ND1*ND1 + MAX( 2*ND1, ( ND1 + ND2 )*NP2 ), $ ND2*ND2 + MAX( 2*ND2, ND2*M2 ), 3*N, $ N*( 2*NP2 + M2 ) + $ MAX( 2*N*M2, M2*NP2 + $ MAX( M2*M2 + 3*M2, NP2*( 2*NP2 + $ M2 + MAX( NP2, N ) ) ) ) ) ) MINWRK = N*M + NP*( N + M ) + M2*M2 + NP2*NP2 + $ MAX( 1, LW1, LW2, LW3, LW4, LW5, LW6 ) IF( LDWORK.LT.MINWRK ) $ INFO = -27 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SB10FD', -INFO ) RETURN END IF C C Quick return if possible. C IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0 $ .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN RCOND( 1 ) = ONE RCOND( 2 ) = ONE RCOND( 3 ) = ONE RCOND( 4 ) = ONE DWORK( 1 ) = ONE RETURN END IF C TOLL = TOL IF( TOLL.LE.ZERO ) THEN C C Set the default value of the tolerance. C TOLL = SQRT( DLAMCH( 'Epsilon' ) ) END IF C C Workspace usage. C IWC = 1 + N*M IWD = IWC + NP*N IWTU = IWD + NP*M IWTY = IWTU + M2*M2 IWRK = IWTY + NP2*NP2 C CALL DLACPY( 'Full', N, M, B, LDB, DWORK, N ) CALL DLACPY( 'Full', NP, N, C, LDC, DWORK( IWC ), NP ) CALL DLACPY( 'Full', NP, M, D, LDD, DWORK( IWD ), NP ) C C Transform the system so that D12 and D21 satisfy the formulas C in the computation of the Hinf (sub)optimal controller. C CALL SB10PD( N, M, NP, NCON, NMEAS, A, LDA, DWORK, N, $ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWTU ), $ M2, DWORK( IWTY ), NP2, RCOND, TOLL, DWORK( IWRK ), $ LDWORK-IWRK+1, INFO2 ) IF( INFO2.GT.0 ) THEN INFO = INFO2 RETURN END IF LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1 C IWX = IWRK IWY = IWX + N*N IWF = IWY + N*N IWH = IWF + M*N IWRK = IWH + N*NP C C Compute the (sub)optimal state feedback and output injection C matrices. C CALL SB10QD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N, $ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ), $ M, DWORK( IWH ), N, DWORK( IWX ), N, DWORK( IWY ), $ N, RCOND(3), IWORK, DWORK( IWRK ), LDWORK-IWRK+1, $ BWORK, INFO2 ) IF( INFO2.GT.0 ) THEN INFO = INFO2 + 5 RETURN END IF LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX ) C C Compute the Hinf (sub)optimal controller. C CALL SB10RD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, DWORK, N, $ DWORK( IWC ), NP, DWORK( IWD ), NP, DWORK( IWF ), $ M, DWORK( IWH ), N, DWORK( IWTU ), M2, DWORK( IWTY ), $ NP2, DWORK( IWX ), N, DWORK( IWY ), N, AK, LDAK, BK, $ LDBK, CK, LDCK, DK, LDDK, IWORK, DWORK( IWRK ), $ LDWORK-IWRK+1, INFO2 ) IF( INFO2.EQ.1 ) THEN INFO = 6 RETURN ELSE IF( INFO2.EQ.2 ) THEN INFO = 9 RETURN END IF LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX ) C DWORK( 1 ) = DBLE( LWAMAX ) RETURN C *** Last line of SB10FD *** END