// Copyright 2005, Ondra Kamenik #include "faa_di_bruno.hh" #include "fine_container.hh" #include double FaaDiBruno::magic_mult = 1.5; // |FaaDiBruno::calculate| folded sparse code /* We take an opportunity to refine the stack container to avoid allocation of more memory than available. */ void FaaDiBruno::calculate(const StackContainer &cont, const TensorContainer &f, FGSTensor &out) { out.zeros(); for (int l = 1; l <= out.dimen(); l++) { int mem_mb, p_size_mb; int max = estimRefinment(out.getDims(), out.nrows(), l, mem_mb, p_size_mb); FoldedFineContainer fine_cont(cont, max); fine_cont.multAndAdd(l, f, out); JournalRecord recc(journal); recc << "dim=" << l << " avmem=" << mem_mb << " tmpmem=" << p_size_mb << " max=" << max << " stacks=" << cont.numStacks() << "->" << fine_cont.numStacks() << endrec; } } // |FaaDiBruno::calculate| folded dense code /* Here we just simply evaluate |multAndAdd| for the dense container. There is no opportunity for tuning. */ void FaaDiBruno::calculate(const FoldedStackContainer &cont, const FGSContainer &g, FGSTensor &out) { out.zeros(); for (int l = 1; l <= out.dimen(); l++) { long int mem = SystemResources::availableMemory(); cont.multAndAdd(l, g, out); JournalRecord rec(journal); int mem_mb = mem/1024/1024; rec << "dim=" << l << " avmem=" << mem_mb << endrec; } } // |FaaDiBruno::calculate| unfolded sparse code /* This is the same as |@<|FaaDiBruno::calculate| folded sparse code@>|. The only difference is that we construct unfolded fine container. */ void FaaDiBruno::calculate(const StackContainer &cont, const TensorContainer &f, UGSTensor &out) { out.zeros(); for (int l = 1; l <= out.dimen(); l++) { int mem_mb, p_size_mb; int max = estimRefinment(out.getDims(), out.nrows(), l, mem_mb, p_size_mb); UnfoldedFineContainer fine_cont(cont, max); fine_cont.multAndAdd(l, f, out); JournalRecord recc(journal); recc << "dim=" << l << " avmem=" << mem_mb << " tmpmem=" << p_size_mb << " max=" << max << " stacks=" << cont.numStacks() << "->" << fine_cont.numStacks() << endrec; } } // |FaaDiBruno::calculate| unfolded dense code /* Again, no tuning opportunity here. */ void FaaDiBruno::calculate(const UnfoldedStackContainer &cont, const UGSContainer &g, UGSTensor &out) { out.zeros(); for (int l = 1; l <= out.dimen(); l++) { long int mem = SystemResources::availableMemory(); cont.multAndAdd(l, g, out); JournalRecord rec(journal); int mem_mb = mem/1024/1024; rec << "dim=" << l << " avmem=" << mem_mb << endrec; } } /* This function returns a number of maximum rows used for refinement of the stacked container. We want to set the maximum so that the expected memory consumption for the number of paralel threads would be less than available memory. On the other hand we do not want to be too pesimistic since a very fine refinement can be very slow. Besides memory needed for a dense unfolded slice of a tensor from |f|, each thread needs |magic_mult*per_size| bytes of memory. In the worst case, |magic_mult| will be equal to 2, this means memory |per_size| for target temporary (permuted symmetry) tensor plus one copy for intermediate result. However, this shows to be too pesimistic, so we set |magic_mult| to 1.5. The memory for permuted symmetry temporary tensor |per_size| is estimated as a weigthed average of unfolded memory of the |out| tensor and unfolded memory of a symetric tensor with the largest coordinate size. Some experiments showed that the best combination of the two is to take 100\% if the latter, so we set |lambda| to zero. The |max| number of rows in the refined |cont| must be such that each slice fits to remaining memory. Number of columns of the slice are never greater $max^l$. (This is not true, since stacks corresponing to unit/zero matrices cannot be further refined). We get en equation: $$nthreads\cdot max^l\cdot 8\cdot r = mem - magic\_mult\cdot nthreads\cdot per\_size\cdot 8\cdot r,$$ where |mem| is available memory in bytes, |nthreads| is a number of threads, $r$ is a number of rows, and $8$ is |sizeof(double)|. If the right hand side is less than zero, we set |max| to 10, just to let it do something. */ int FaaDiBruno::estimRefinment(const TensorDimens &tdims, int nr, int l, int &avmem_mb, int &tmpmem_mb) { int nthreads = sthread::detach_thread_group::max_parallel_threads; long int per_size1 = tdims.calcUnfoldMaxOffset(); auto per_size2 = (long int) pow((double) tdims.getNVS().getMax(), l); double lambda = 0.0; long int per_size = sizeof(double)*nr *(long int) (lambda*per_size1+(1-lambda)*per_size2); long int mem = SystemResources::availableMemory(); int max = 0; double num_cols = ((double) (mem-magic_mult*nthreads*per_size)) /nthreads/sizeof(double)/nr; if (num_cols > 0) { double maxd = pow(num_cols, ((double) 1)/l); max = (int) floor(maxd); } if (max == 0) { max = 10; JournalRecord rec(journal); rec << "dim=" << l << " run out of memory, imposing max=" << max; if (nthreads > 1) rec << " (decrease number of threads)"; rec << endrec; } avmem_mb = mem/1024/1024; tmpmem_mb = (nthreads*per_size)/1024/1024; return max; }