function [Gamma_y,stationary_vars] = th_autocovariances(dr,ivar,M_,options_,nodecomposition) % Computes the theoretical auto-covariances, Gamma_y, for an AR(p) process % with coefficients dr.ghx and dr.ghu and shock variances Sigma_e % for a subset of variables ivar. % Theoretical HP-filtering and band-pass filtering is available as an option % % INPUTS % dr: [structure] Reduced form solution of the DSGE model (decisions rules) % ivar: [integer] Vector of indices for a subset of variables. % M_ [structure] Global dynare's structure, description of the DSGE model. % options_ [structure] Global dynare's structure. % nodecomposition [integer] Scalar, if different from zero the variance decomposition is not triggered. % % OUTPUTS % Gamma_y [cell] Matlab cell of nar+3 (second order approximation) or nar+2 (first order approximation) arrays, % where nar is the order of the autocorrelation function. % Gamma_y{1} [double] Covariance matrix. % Gamma_y{i+1} [double] Autocorrelation function (for i=1,...,options_.nar). % Gamma_y{nar+2} [double] Variance decomposition. % Gamma_y{nar+3} [double] Expectation of the endogenous variables associated with a second % order approximation. % stationary_vars [integer] Vector of indices of stationary variables (as a subset of 1:length(ivar)) % % SPECIAL REQUIREMENTS % % Algorithms % The means at order=2 are based on the pruned state space as % in Kim, Kim, Schaumburg, Sims (2008): Calculating and using second-order accurate % solutions of discrete time dynamic equilibrium models. % The solution at second order can be written as: % \[ % \hat x_t = g_x \hat x_{t - 1} + g_u u_t + \frac{1}{2}\left( g_{\sigma\sigma} \sigma^2 + g_{xx}\hat x_t^2 + g_{uu} u_t^2 \right) % \] % Taking expectations on both sides requires to compute E(x^2)=Var(x), which % can be obtained up to second order from the first order solution % \[ % \hat x_t = g_x \hat x_{t - 1} + g_u u_t % \] % by solving the corresponding Lyapunov equation. % Given Var(x), the above equation can be solved for E(x_t) as % \[ % E(x_t) = (I - {g_x}\right)^{- 1} 0.5\left( g_{\sigma\sigma} \sigma^2 + g_{xx} Var(\hat x_t) + g_{uu} Var(u_t) \right) % \] % % Copyright (C) 2001-2017 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . if nargin<5 nodecomposition = 0; end if options_.order >= 3 error('Theoretical moments not implemented above 2nd order') end local_order = options_.order; if M_.hessian_eq_zero && local_order~=1 local_order = 1; end endo_nbr = M_.endo_nbr; exo_names_orig_ord = M_.exo_names_orig_ord; if isoctave warning('off', 'Octave:divide-by-zero') else warning off MATLAB:dividebyzero end nar = options_.ar; Gamma_y = cell(nar+2,1); if isempty(ivar) ivar = [1:endo_nbr]'; end nvar = size(ivar,1); ghx = dr.ghx; ghu = dr.ghu; nspred = M_.nspred; nstatic = M_.nstatic; nx = size(ghx,2); if options_.block == 0 %order_var = dr.order_var; inv_order_var = dr.inv_order_var; kstate = dr.kstate; ikx = [nstatic+1:nstatic+nspred]; k0 = kstate(find(kstate(:,2) <= M_.maximum_lag+1),:); i0 = find(k0(:,2) == M_.maximum_lag+1); i00 = i0; n0 = length(i0); AS = ghx(:,i0); ghu1 = zeros(nx,M_.exo_nbr); ghu1(i0,:) = ghu(ikx,:); for i=M_.maximum_lag:-1:2 i1 = find(k0(:,2) == i); n1 = size(i1,1); j1 = zeros(n1,1); for k1 = 1:n1 j1(k1) = find(k0(i00,1)==k0(i1(k1),1)); end AS(:,j1) = AS(:,j1)+ghx(:,i1); i0 = i1; end else ghu1 = zeros(nx,M_.exo_nbr); trend = 1:M_.endo_nbr; inv_order_var = trend(M_.block_structure.variable_reordered); ghu1(1:length(dr.state_var),:) = ghu(dr.state_var,:); end b = ghu1*M_.Sigma_e*ghu1'; if options_.block == 0 ipred = nstatic+(1:nspred)'; else ipred = dr.state_var; end % state space representation for state variables only [A,B] = kalman_transition_matrix(dr,ipred,1:nx,M_.exo_nbr); % Compute stationary variables (before HP filtering), % and compute 2nd order mean correction on stationary variables (in case of % HP filtering, this mean correction is computed *before* filtering) if local_order == 2 || options_.hp_filter == 0 [vx, u] = lyapunov_symm(A,B*M_.Sigma_e*B',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,[],options_.debug); if options_.block == 0 iky = inv_order_var(ivar); else iky = ivar; end stationary_vars = (1:length(ivar))'; if ~isempty(u) x = abs(ghx*u); iky = iky(find(all(x(iky,:) < options_.Schur_vec_tol,2))); stationary_vars = find(all(x(inv_order_var(ivar(stationary_vars)),:) < options_.Schur_vec_tol,2)); end aa = ghx(iky,:); bb = ghu(iky,:); if local_order == 2 % mean correction for 2nd order if ~isempty(ikx) Ex = (dr.ghs2(ikx)+dr.ghxx(ikx,:)*vx(:)+dr.ghuu(ikx,:)*M_.Sigma_e(:))/2; Ex = (eye(n0)-AS(ikx,:))\Ex; Gamma_y{nar+3} = NaN*ones(nvar, 1); Gamma_y{nar+3}(stationary_vars) = AS(iky,:)*Ex+(dr.ghs2(iky)+dr.ghxx(iky,:)*vx(:)+... dr.ghuu(iky,:)*M_.Sigma_e(:))/2; else %no static and no predetermined Gamma_y{nar+3} = NaN*ones(nvar, 1); Gamma_y{nar+3}(stationary_vars) = (dr.ghs2(iky)+ dr.ghuu(iky,:)*M_.Sigma_e(:))/2; end end end if options_.hp_filter == 0 && ~options_.bandpass.indicator v = NaN*ones(nvar,nvar); v(stationary_vars,stationary_vars) = aa*vx*aa'+ bb*M_.Sigma_e*bb'; k = find(abs(v) < 1e-12); v(k) = 0; Gamma_y{1} = v; % autocorrelations if nar > 0 vxy = (A*vx*aa'+ghu1*M_.Sigma_e*bb'); sy = sqrt(diag(Gamma_y{1})); sy = sy(stationary_vars); sy = sy *sy'; Gamma_y{2} = NaN*ones(nvar,nvar); Gamma_y{2}(stationary_vars,stationary_vars) = aa*vxy./sy; for i=2:nar vxy = A*vxy; Gamma_y{i+1} = NaN*ones(nvar,nvar); Gamma_y{i+1}(stationary_vars,stationary_vars) = aa*vxy./sy; end end % variance decomposition if ~nodecomposition && M_.exo_nbr > 0 && size(stationary_vars, 1) > 0 if M_.exo_nbr == 1 Gamma_y{nar+2} = ones(nvar,1); else Gamma_y{nar+2} = NaN(nvar,M_.exo_nbr); SS(exo_names_orig_ord,exo_names_orig_ord)=M_.Sigma_e+1e-14*eye(M_.exo_nbr); cs = chol(SS)'; b1(:,exo_names_orig_ord) = ghu1; b1 = b1*cs; b2(:,exo_names_orig_ord) = ghu(iky,:); b2 = b2*cs; vx = lyapunov_symm(A,b1*b1',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,1,options_.debug); vv = diag(aa*vx*aa'+b2*b2'); vv2 = 0; for i=1:M_.exo_nbr vx1 = lyapunov_symm(A,b1(:,i)*b1(:,i)',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,2,options_.debug); vx2 = abs(diag(aa*vx1*aa'+b2(:,i)*b2(:,i)')); Gamma_y{nar+2}(stationary_vars,i) = vx2; vv2 = vv2 +vx2; end if max(abs(vv2-vv)./vv) > 1e-4 warning(['Aggregate variance and sum of variances by shocks ' ... 'differ by more than 0.01 %']) end for i=1:M_.exo_nbr Gamma_y{nar+2}(stationary_vars,i) = Gamma_y{nar+ ... 2}(stationary_vars,i)./vv2; end end end else% ==> Theoretical filters. % By construction, all variables are stationary when HP filtered iky = inv_order_var(ivar); stationary_vars = (1:length(ivar))'; aa = ghx(iky,:); %R in Uhlig (2001) bb = ghu(iky,:); %S in Uhlig (2001) lambda = options_.hp_filter; ngrid = options_.hp_ngrid; freqs = 0 : ((2*pi)/ngrid) : (2*pi*(1 - .5/ngrid)); %[0,2*pi) tpos = exp( sqrt(-1)*freqs); %positive frequencies tneg = exp(-sqrt(-1)*freqs); %negative frequencies if options_.bandpass.indicator filter_gain = zeros(1,ngrid); lowest_periodicity=options_.bandpass.passband(2); highest_periodicity=options_.bandpass.passband(1); highest_periodicity=max(2,highest_periodicity); % restrict to upper bound of pi filter_gain(freqs>=2*pi/lowest_periodicity & freqs<=2*pi/highest_periodicity)=1; filter_gain(freqs<=-2*pi/lowest_periodicity+2*pi & freqs>=-2*pi/highest_periodicity+2*pi)=1; else filter_gain = 4*lambda*(1 - cos(freqs)).^2 ./ (1 + 4*lambda*(1 - cos(freqs)).^2); %HP transfer function end mathp_col = NaN(ngrid,length(ivar)^2); IA = eye(size(A,1)); IE = eye(M_.exo_nbr); for ig = 1:ngrid if filter_gain(ig)==0 f_hp = zeros(length(ivar),length(ivar)); else f_omega =(1/(2*pi))*([(IA-A*tneg(ig))\ghu1;IE]... *M_.Sigma_e*[ghu1'/(IA-A'*tpos(ig)) IE]); % spectral density of state variables; top formula Uhlig (2001), p. 20 with N=0 g_omega = [aa*tneg(ig) bb]*f_omega*[aa'*tpos(ig); bb']; % spectral density of selected variables; middle formula Uhlig (2001), p. 20; only middle block, i.e. y_t' f_hp = filter_gain(ig)^2*g_omega; % spectral density of selected filtered series; top formula Uhlig (2001), p. 21; end mathp_col(ig,:) = (f_hp(:))'; % store as matrix row for ifft end % Covariance of filtered series imathp_col = real(ifft(mathp_col))*(2*pi); % Inverse Fast Fourier Transformation; middle formula Uhlig (2001), p. 21; Gamma_y{1} = reshape(imathp_col(1,:),nvar,nvar); % Autocorrelations if nar > 0 sy = sqrt(diag(Gamma_y{1})); sy = sy *sy'; for i=1:nar Gamma_y{i+1} = reshape(imathp_col(i+1,:),nvar,nvar)./sy; end end % Variance decomposition if ~nodecomposition && M_.exo_nbr > 0 if M_.exo_nbr == 1 Gamma_y{nar+2} = ones(nvar,1); else Gamma_y{nar+2} = zeros(nvar,M_.exo_nbr); SS(exo_names_orig_ord,exo_names_orig_ord) = M_.Sigma_e+1e-14*eye(M_.exo_nbr); %make sure Covariance matrix is positive definite cs = chol(SS)'; SS = cs*cs'; b1(:,exo_names_orig_ord) = ghu1; b2(:,exo_names_orig_ord) = ghu(iky,:); mathp_col = NaN(ngrid,length(ivar)^2); IA = eye(size(A,1)); IE = eye(M_.exo_nbr); for ig = 1:ngrid if filter_gain(ig)==0 f_hp = zeros(length(ivar),length(ivar)); else f_omega =(1/(2*pi))*( [(IA-A*tneg(ig))\b1;IE]... *SS*[b1'/(IA-A'*tpos(ig)) IE]); % spectral density of state variables; top formula Uhlig (2001), p. 20 with N=0 g_omega = [aa*tneg(ig) b2]*f_omega*[aa'*tpos(ig); b2']; % spectral density of selected variables; middle formula Uhlig (2001), p. 20; only middle block, i.e. y_t' f_hp = filter_gain(ig)^2*g_omega; % spectral density of selected filtered series; top formula Uhlig (2001), p. 21; end mathp_col(ig,:) = (f_hp(:))'; % store as matrix row for ifft end imathp_col = real(ifft(mathp_col))*(2*pi); vv = diag(reshape(imathp_col(1,:),nvar,nvar)); for i=1:M_.exo_nbr mathp_col = NaN(ngrid,length(ivar)^2); SSi = cs(:,i)*cs(:,i)'; for ig = 1:ngrid if filter_gain(ig)==0 f_hp = zeros(length(ivar),length(ivar)); else f_omega =(1/(2*pi))*( [(IA-A*tneg(ig))\b1;IE]... *SSi*[b1'/(IA-A'*tpos(ig)) IE]); % spectral density of state variables; top formula Uhlig (2001), p. 20 with N=0 g_omega = [aa*tneg(ig) b2]*f_omega*[aa'*tpos(ig); b2']; % spectral density of selected variables; middle formula Uhlig (2001), p. 20; only middle block, i.e. y_t' f_hp = filter_gain(ig)^2*g_omega; % spectral density of selected filtered series; top formula Uhlig (2001), p. 21; end mathp_col(ig,:) = (f_hp(:))'; % store as matrix row for ifft end imathp_col = real(ifft(mathp_col))*(2*pi); Gamma_y{nar+2}(:,i) = abs(diag(reshape(imathp_col(1,:),nvar,nvar)))./vv; end end end end if isoctave warning('on', 'Octave:divide-by-zero') else warning on MATLAB:dividebyzero end