function [alphahat,epsilonhat,etahat,a,P,aK,PK,decomp,V] = missing_DiffuseKalmanSmootherH3_Z(T,Z,R,Q,H,Pinf1,Pstar1,Y,pp,mm,smpl,data_index,nk,kalman_tol,diffuse_kalman_tol,decomp_flag,state_uncertainty_flag) % function [alphahat,epsilonhat,etahat,a1,P,aK,PK,d,decomp] = missing_DiffuseKalmanSmootherH3_Z(T,Z,R,Q,H,Pinf1,Pstar1,Y,pp,mm,smpl,data_index,nk,kalman_tol,decomp_flag,state_uncertainty_flag) % Computes the diffuse kalman smoother in the case of a singular var-cov matrix. % Univariate treatment of multivariate time series. % % INPUTS % T: mm*mm matrix state transition matrix % Z: pp*mm matrix selector matrix for observables in augmented state vector % R: mm*rr matrix second matrix of the state equation relating the structural innovations to the state variables % Q: rr*rr matrix covariance matrix of structural errors % H: pp*1 vector of variance of measurement errors % Pinf1: mm*mm diagonal matrix with with q ones and m-q zeros % Pstar1: mm*mm variance-covariance matrix with stationary variables % Y: pp*1 vector % pp: number of observed variables % mm: number of state variables % smpl: sample size % data_index [cell] 1*smpl cell of column vectors of indices. % nk number of forecasting periods % kalman_tol tolerance for zero divider % diffuse_kalman_tol tolerance for zero divider % decomp_flag if true, compute filter decomposition % state_uncertainty_flag if true, compute uncertainty about smoothed % state estimate % % OUTPUTS % alphahat: smoothed state variables (a_{t|T}) % epsilonhat: measurement errors % etahat: smoothed shocks % a: matrix of updated variables (a_{t|t}) % aK: 3D array of k step ahead filtered state variables (a_{t+k|t}) % (meaningless for periods 1:d) % P: 3D array of one-step ahead forecast error variance % matrices % PK: 4D array of k-step ahead forecast error variance % matrices (meaningless for periods 1:d) % decomp: decomposition of the effect of shocks on filtered values % V: 3D array of state uncertainty matrices % % Notes: % Outputs are stored in decision-rule order, i.e. to get variables in order of declaration % as in M_.endo_names, ones needs code along the lines of: % variables_declaration_order(dr.order_var,:) = alphahat % % Algorithm: % % Uses the univariate filter as described in Durbin/Koopman (2012): "Time % Series Analysis by State Space Methods", Oxford University Press, % Second Edition, Ch. 6.4 + 7.2.5 % and % Koopman/Durbin (2000): "Fast Filtering and Smoothing for Multivariatze State Space % Models", in Journal of Time Series Analysis, vol. 21(3), pp. 281-296. % % SPECIAL REQUIREMENTS % See "Filtering and Smoothing of State Vector for Diffuse State Space % Models", S.J. Koopman and J. Durbin (2003), in Journal of Time Series % Analysis, vol. 24(1), pp. 85-98. % Copyright (C) 2004-2018 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . % Modified by M. Ratto % New output argument aK: 1-step to nk-stpe ahed predictions) % New input argument nk: max order of predictions in aK if size(H,2)>1 error('missing_DiffuseKalmanSmootherH3_Z:: H is not a vector. This must not happens') end d = 0; decomp = []; spinf = size(Pinf1); spstar = size(Pstar1); v = zeros(pp,smpl); a = zeros(mm,smpl); a1 = zeros(mm,smpl+1); aK = zeros(nk,mm,smpl+nk); Fstar = zeros(pp,smpl); Finf = zeros(pp,smpl); Fi = zeros(pp,smpl); Ki = zeros(mm,pp,smpl); Kstar = zeros(mm,pp,smpl); Kinf = zeros(spstar(1),pp,smpl); P = zeros(mm,mm,smpl+1); P1 = P; PK = zeros(nk,mm,mm,smpl+nk); Pstar = zeros(spstar(1),spstar(2),smpl); Pstar(:,:,1) = Pstar1; Pinf = zeros(spinf(1),spinf(2),smpl); Pinf(:,:,1) = Pinf1; Pstar1 = Pstar; Pinf1 = Pinf; rr = size(Q,1); % number of structural shocks QQ = R*Q*transpose(R); QRt = Q*transpose(R); alphahat = zeros(mm,smpl); etahat = zeros(rr,smpl); epsilonhat = zeros(rr,smpl); r = zeros(mm,smpl); if state_uncertainty_flag V = zeros(mm,mm,smpl); N = zeros(mm,mm,smpl); else V=[]; end t = 0; icc=0; if ~isempty(Pinf(:,:,1)) newRank = rank(Z*Pinf(:,:,1)*Z',diffuse_kalman_tol); else newRank = rank(Pinf(:,:,1),diffuse_kalman_tol); end while newRank && t < smpl t = t+1; a(:,t) = a1(:,t); Pstar1(:,:,t) = Pstar(:,:,t); Pinf1(:,:,t) = Pinf(:,:,t); di = data_index{t}'; for i=di Zi = Z(i,:); v(i,t) = Y(i,t)-Zi*a(:,t); % nu_{t,i} in 6.13 in DK (2012) Fstar(i,t) = Zi*Pstar(:,:,t)*Zi' +H(i); % F_{*,t} in 5.7 in DK (2012), relies on H being diagonal Finf(i,t) = Zi*Pinf(:,:,t)*Zi'; % F_{\infty,t} in 5.7 in DK (2012) Kstar(:,i,t) = Pstar(:,:,t)*Zi'; % KD (2000), eq. (15) if Finf(i,t) > diffuse_kalman_tol && newRank % F_{\infty,t,i} = 0, use upper part of bracket on p. 175 DK (2012) for w_{t,i} icc=icc+1; Kinf(:,i,t) = Pinf(:,:,t)*Zi'; % KD (2000), eq. (15) Kinf_Finf = Kinf(:,i,t)/Finf(i,t); a(:,t) = a(:,t) + Kinf_Finf*v(i,t); % KD (2000), eq. (16) Pstar(:,:,t) = Pstar(:,:,t) + ... Kinf(:,i,t)*Kinf_Finf'*(Fstar(i,t)/Finf(i,t)) - ... Kstar(:,i,t)*Kinf_Finf' - ... Kinf_Finf*Kstar(:,i,t)'; % KD (2000), eq. (16) Pinf(:,:,t) = Pinf(:,:,t) - Kinf(:,i,t)*Kinf(:,i,t)'/Finf(i,t); % KD (2000), eq. (16) elseif Fstar(i,t) > kalman_tol a(:,t) = a(:,t) + Kstar(:,i,t)*v(i,t)/Fstar(i,t); % KD (2000), eq. (17) Pstar(:,:,t) = Pstar(:,:,t) - Kstar(:,i,t)*Kstar(:,i,t)'/Fstar(i,t); % KD (2000), eq. (17) % Pinf is passed through unaltered, see eq. (17) of % Koopman/Durbin (2000) else % do nothing as a_{t,i+1}=a_{t,i} and P_{t,i+1}=P_{t,i}, see % p. 157, DK (2012) end end if newRank if ~isempty(Pinf(:,:,t)) oldRank = rank(Z*Pinf(:,:,t)*Z',diffuse_kalman_tol); else oldRank = rank(Pinf(:,:,t),diffuse_kalman_tol); end else oldRank = 0; end a1(:,t+1) = T*a(:,t); aK(1,:,t+1) = a1(:,t+1); for jnk=2:nk aK(jnk,:,t+jnk) = T*dynare_squeeze(aK(jnk-1,:,t+jnk-1)); end Pstar(:,:,t+1) = T*Pstar(:,:,t)*T'+ QQ; Pinf(:,:,t+1) = T*Pinf(:,:,t)*T'; if newRank if ~isempty(Pinf(:,:,t+1)) newRank = rank(Z*Pinf(:,:,t+1)*Z',diffuse_kalman_tol); else newRank = rank(Pinf(:,:,t+1),diffuse_kalman_tol); end end if oldRank ~= newRank disp('univariate_diffuse_kalman_filter:: T does influence the rank of Pinf!') disp('This may happen for models with order of integration >1.') end end d = t; P(:,:,d+1) = Pstar(:,:,d+1); Fstar = Fstar(:,1:d); Finf = Finf(:,1:d); Kstar = Kstar(:,:,1:d); Pstar = Pstar(:,:,1:d); Pinf = Pinf(:,:,1:d); Pstar1 = Pstar1(:,:,1:d); Pinf1 = Pinf1(:,:,1:d); notsteady = 1; while notsteady && t kalman_tol a(:,t) = a(:,t) + Ki(:,i,t)*v(i,t)/Fi(i,t); %filtering according to (6.13) in DK (2012) P(:,:,t) = P(:,:,t) - Ki(:,i,t)*Ki(:,i,t)'/Fi(i,t); %filtering according to (6.13) in DK (2012) else % do nothing as a_{t,i+1}=a_{t,i} and P_{t,i+1}=P_{t,i}, see % p. 157, DK (2012) end end a1(:,t+1) = T*a(:,t); %transition according to (6.14) in DK (2012) Pf = P(:,:,t); aK(1,:,t+1) = a1(:,t+1); for jnk=1:nk Pf = T*Pf*T' + QQ; PK(jnk,:,:,t+jnk) = Pf; if jnk>1 aK(jnk,:,t+jnk) = T*dynare_squeeze(aK(jnk-1,:,t+jnk-1)); end end P(:,:,t+1) = T*P(:,:,t)*T' + QQ; %transition according to (6.14) in DK (2012) % notsteady = ~(max(max(abs(P(:,:,t+1)-P(:,:,t)))) kalman_tol % $$$ a(:,t) = a(:,t) + Ki_s(:,i)*v(i,t)/Fi_s(i); % $$$ end % $$$ end % $$$ a1(:,t+1) = T*a(:,t); % $$$ Pf = P(:,:,t); % $$$ for jnk=1:nk, % $$$ Pf = T*Pf*T' + QQ; % $$$ aK(jnk,:,t+jnk) = T^jnk*a(:,t); % $$$ PK(jnk,:,:,t+jnk) = Pf; % $$$ end % $$$ end %% do backward pass ri=zeros(mm,1); if state_uncertainty_flag Ni=zeros(mm,mm); end t = smpl+1; while t > d+1 t = t-1; di = flipud(data_index{t})'; for i = di if Fi(i,t) > kalman_tol Li = eye(mm)-Ki(:,i,t)*Z(i,:)/Fi(i,t); ri = Z(i,:)'/Fi(i,t)*v(i,t)+Li'*ri; % DK (2012), 6.15, equation for r_{t,i-1} if state_uncertainty_flag Ni = Z(i,:)'/Fi(i,t)*Z(i,:)+Li'*Ni*Li; % KD (2000), eq. (23) end end end r(:,t) = ri; % DK (2012), below 6.15, r_{t-1}=r_{t,0} alphahat(:,t) = a1(:,t) + P1(:,:,t)*r(:,t); etahat(:,t) = QRt*r(:,t); ri = T'*ri; % KD (2003), eq. (23), equation for r_{t-1,p_{t-1}} if state_uncertainty_flag N(:,:,t) = Ni; % DK (2012), below 6.15, N_{t-1}=N_{t,0} V(:,:,t) = P1(:,:,t)-P1(:,:,t)*N(:,:,t)*P1(:,:,t); % KD (2000), eq. (7) with N_{t-1} stored in N(:,:,t) Ni = T'*Ni*T; % KD (2000), eq. (23), equation for N_{t-1,p_{t-1}} end end if d r0 = zeros(mm,d); r0(:,d) = ri; r1 = zeros(mm,d); if state_uncertainty_flag %N_0 at (d+1) is N(d+1), so we can use N for continuing and storing N_0-recursion N_0=zeros(mm,mm,d); %set N_1_{d}=0, below KD (2000), eq. (24) N_0(:,:,d) = Ni; N_1=zeros(mm,mm,d); %set N_1_{d}=0, below KD (2000), eq. (24) N_2=zeros(mm,mm,d); %set N_2_{d}=0, below KD (2000), eq. (24) end for t = d:-1:1 di = flipud(data_index{t})'; for i = di if Finf(i,t) > diffuse_kalman_tol % recursions need to be from highest to lowest term in order to not % overwrite lower terms still needed in this step Linf = eye(mm) - Kinf(:,i,t)*Z(i,:)/Finf(i,t); L0 = (Kinf(:,i,t)*(Fstar(i,t)/Finf(i,t))-Kstar(:,i,t))*Z(i,:)/Finf(i,t); r1(:,t) = Z(i,:)'*v(i,t)/Finf(i,t) + ... L0'*r0(:,t) + ... Linf'*r1(:,t); % KD (2000), eq. (25) for r_1 r0(:,t) = Linf'*r0(:,t); % KD (2000), eq. (25) for r_0 if state_uncertainty_flag N_2(:,:,t)=Z(i,:)'/Finf(i,t)^2*Z(i,:)*Fstar(i,t) ... + Linf'*N_2(:,:,t)*Linf... + Linf'*N_1(:,:,t)*L0... + L0'*N_1(:,:,t)'*Linf... + L0'*N_0(:,:,t)*L0; % DK (2012), eq. 5.29 N_1(:,:,t)=Z(i,:)'/Finf(i,t)*Z(i,:)+Linf'*N_1(:,:,t)*Linf... +L0'*N_0(:,:,t)*Linf; % DK (2012), eq. 5.29; note that, compared to DK (2003) this drops the term (L_1'*N(:,:,t+1)*Linf(:,:,t))' in the recursion due to it entering premultiplied by Pinf when computing V, and Pinf*Linf'*N=0 N_0(:,:,t)=Linf'*N_0(:,:,t)*Linf; % DK (2012), eq. 5.19, noting that L^(0) is named Linf end elseif Fstar(i,t) > kalman_tol % step needed whe Finf == 0 L_i=eye(mm) - Kstar(:,i,t)*Z(i,:)/Fstar(i,t); r0(:,t) = Z(i,:)'/Fstar(i,t)*v(i,t)+L_i'*r0(:,t); % propagate r0 and keep r1 fixed if state_uncertainty_flag N_0(:,:,t)=Z(i,:)'/Fstar(i,t)*Z(i,:)+L_i'*N_0(:,:,t)*L_i; % propagate N_0 and keep N_1 and N_2 fixed end end end alphahat(:,t) = a1(:,t) + Pstar1(:,:,t)*r0(:,t) + Pinf1(:,:,t)*r1(:,t); % KD (2000), eq. (26) r(:,t) = r0(:,t); etahat(:,t) = QRt*r(:,t); % KD (2000), eq. (27) if state_uncertainty_flag V(:,:,t)=Pstar(:,:,t)-Pstar(:,:,t)*N_0(:,:,t)*Pstar(:,:,t)... -(Pinf(:,:,t)*N_1(:,:,t)*Pstar(:,:,t))'... - Pinf(:,:,t)*N_1(:,:,t)*Pstar(:,:,t)... - Pinf(:,:,t)*N_2(:,:,t)*Pinf(:,:,t); % DK (2012), eq. 5.30 end if t > 1 r0(:,t-1) = T'*r0(:,t); % KD (2000), below eq. (25) r_{t-1,p_{t-1}}=T'*r_{t,0} r1(:,t-1) = T'*r1(:,t); % KD (2000), below eq. (25) r_{t-1,p_{t-1}}=T'*r_{t,0} if state_uncertainty_flag N_0(:,:,t-1)= T'*N_0(:,t)*T; % KD (2000), below eq. (25) N_{t-1,p_{t-1}}=T'*N_{t,0}*T N_1(:,:,t-1)= T'*N_1(:,t)*T; % KD (2000), below eq. (25) N^1_{t-1,p_{t-1}}=T'*N^1_{t,0}*T N_2(:,:,t-1)= T'*N_2(:,t)*T; % KD (2000), below eq. (25) N^2_{t-1,p_{t-1}}=T'*N^2_{t,0}*T end end end end if decomp_flag decomp = zeros(nk,mm,rr,smpl+nk); ZRQinv = inv(Z*QQ*Z'); for t = max(d,1):smpl ri_d = zeros(mm,1); di = flipud(data_index{t})'; for i = di if Fi(i,t) > kalman_tol ri_d = Z(i,:)'/Fi(i,t)*v(i,t)+ri_d-Ki(:,i,t)'*ri_d/Fi(i,t)*Z(i,:)'; end end % calculate eta_tm1t eta_tm1t = QRt*ri_d; % calculate decomposition Ttok = eye(mm,mm); AAA = P1(:,:,t)*Z'*ZRQinv*Z*R; for h = 1:nk BBB = Ttok*AAA; for j=1:rr decomp(h,:,j,t+h) = eta_tm1t(j)*BBB(:,j); end Ttok = T*Ttok; end end end epsilonhat = Y - Z*alphahat; if (d==smpl) warning(['missing_DiffuseKalmanSmootherH3_Z:: There isn''t enough information to estimate the initial conditions of the nonstationary variables']); return end