function [JJ, H, gam, gp, dA, dOm, dYss] = getJJ(A, B, estim_params_, M_,oo_,options_,kronflag,indx,indexo,mf,nlags,useautocorr) % function [JJ, H, gam, gp, dA, dOm, dYss] = getJJ(A, B, estim_params_, M_,oo_,options_,kronflag,indx,indexo,mf,nlags,useautocorr) % computes derivatives of 1st and 2nd order moments of observables with % respect to estimated parameters % % Inputs: % A: Transition matrix of lagged states from Kalman filter % B: Matrix in state transition equation mapping shocks today to % states today % M_: structure storing the model information % oo_: structure storing the results % options_: structure storing the options % kronflag: Indicator whether to rely on Kronecker products (1) or % not (-1 or -2) % indx: Index of estimated parameters in M_.params % indexo: Index of estimated standard deviations in M_.exo_names % mf: Index of observed variables % nlags: Number of lags to consider for covariances and % correlations % useautocorr: Indicator on whether to use correlations (1) instead of % covariances (0) % % Outputs: % JJ: Jacobian of 1st and 2nd order moments of observables, i.e. dgam/dTHETA % (see below for definition of gam) % H: dTAU/dTHETA: Jacobian of TAU, vectorized form of % linearized reduced form state space model, given ys [steady state], % A [transition matrix], B [matrix of shocks], Sigma [covariance of shocks] % TAU = [ys; vec(A); dyn_vech(B*Sigma*B')]. % gam: vector of theoretical moments of observed variables mf [JJ is the Jacobian of gam]. % gam = [ys(mf); dyn_vech(GAM{1}); vec(GAM{j+1})]; for j=1:ar and where % GAM is the first output of th_autocovariances % gp: Jacobian of linear rational expectation matrices [i.e. % Jacobian of dynamic model] with respect to estimated % structural parameters only (indx) % dA: [endo_nbr by endo_nbr by (indx+indexo)] Jacobian of transition matrix A % dOm: Jacobian of Omega = (B*Sigma*B') % dYss Jacobian of steady state with respect to estimated structural parameters only (indx) % Copyright (C) 2010-2017 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . if nargin<8 || isempty(indx) % indx = [1:M_.param_nbr]; end if nargin<9 || isempty(indexo) indexo = []; end if nargin<11 || isempty(nlags) nlags=3; end if nargin<12 || isempty(useautocorr) useautocorr=0; end % if useautocorr, warning('off','MATLAB:divideByZero') % end if kronflag == -1 fun = 'thet2tau'; params0 = M_.params; para0 = get_all_parameters(estim_params_, M_); JJ = fjaco(fun,para0,estim_params_,M_, oo_, indx,indexo,1,mf,nlags,useautocorr); M_.params = params0; params0 = M_.params; H = fjaco(fun,para0,estim_params_,M_, oo_, indx,indexo,0,mf,nlags,useautocorr); M_.params = params0; params0 = M_.params; gp = fjaco(fun,para0,estim_params_,M_, oo_, indx,indexo,-1); M_.params = params0; offset = length(para0)-length(indx); gp = gp(:,offset+1:end); dYss = H(1:M_.endo_nbr,offset+1:end); dA = reshape(H(M_.orig_endo_nbr+[1:numel(A)],:),[size(A),size(H,2)]); dOm = dA*0; for j=1:size(H,2) dOm(:,:,j) = dyn_unvech(H(M_.endo_nbr+numel(A)+1:end,j)); end assignin('base','M_', M_); assignin('base','oo_', oo_); else [H, dA, dOm, dYss, gp] = getH(A, B, estim_params_,M_,oo_,options_,kronflag,indx,indexo); gp = reshape(gp,size(gp,1)*size(gp,2),size(gp,3)); gp = [dYss; gp]; % if isempty(H), % JJ = []; % GAM = []; % return % end m = length(A); GAM = lyapunov_symm(A,B*M_.Sigma_e*B',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,1,options_.debug); k = find(abs(GAM) < 1e-12); GAM(k) = 0; % if useautocorr, sdy = sqrt(diag(GAM)); sy = sdy*sdy'; % end % BB = dOm*0; % for j=1:length(indx), % BB(:,:,j)= dA(:,:,j)*GAM*A'+A*GAM*dA(:,:,j)'+dOm(:,:,j); % end % XX = lyapunov_symm_mr(A,BB,options_.qz_criterium,options_.lyapunov_complex_threshold,0); for j=1:length(indexo) dum = lyapunov_symm(A,dOm(:,:,j),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,2,options_.debug); % dum = XX(:,:,j); k = find(abs(dum) < 1e-12); dum(k) = 0; if useautocorr dsy = 1/2./sdy.*diag(dum); dsy = dsy*sdy'+sdy*dsy'; dum1=dum; dum1 = (dum1.*sy-dsy.*GAM)./(sy.*sy); dum1 = dum1-diag(diag(dum1))+diag(diag(dum)); dumm = dyn_vech(dum1(mf,mf)); else dumm = dyn_vech(dum(mf,mf)); end for i=1:nlags dum1 = A^i*dum; if useautocorr dum1 = (dum1.*sy-dsy.*(A^i*GAM))./(sy.*sy); end dumm = [dumm; vec(dum1(mf,mf))]; end JJ(:,j) = dumm; end nexo = length(indexo); for j=1:length(indx) dum = lyapunov_symm(A,dA(:,:,j+nexo)*GAM*A'+A*GAM*dA(:,:,j+nexo)'+dOm(:,:,j+nexo),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold,2,options_.debug); % dum = XX(:,:,j); k = find(abs(dum) < 1e-12); dum(k) = 0; if useautocorr dsy = 1/2./sdy.*diag(dum); dsy = dsy*sdy'+sdy*dsy'; dum1=dum; dum1 = (dum1.*sy-dsy.*GAM)./(sy.*sy); dum1 = dum1-diag(diag(dum1))+diag(diag(dum)); dumm = dyn_vech(dum1(mf,mf)); else dumm = dyn_vech(dum(mf,mf)); end for i=1:nlags dum1 = A^i*dum; for ii=1:i dum1 = dum1 + A^(ii-1)*dA(:,:,j+nexo)*A^(i-ii)*GAM; end if useautocorr dum1 = (dum1.*sy-dsy.*(A^i*GAM))./(sy.*sy); end dumm = [dumm; vec(dum1(mf,mf))]; end JJ(:,j+nexo) = dumm; end JJ = [ [zeros(length(mf),nexo) dYss(mf,:)]; JJ]; end if nargout >2 % sy=sy(mf,mf); options_.ar=nlags; nodecomposition = 1; [GAM,stationary_vars] = th_autocovariances(oo_.dr,oo_.dr.order_var(mf),M_,options_,nodecomposition); sy=sqrt(diag(GAM{1})); sy=sy*sy'; if useautocorr sy=sy-diag(diag(sy))+eye(length(mf)); GAM{1}=GAM{1}./sy; else for j=1:nlags GAM{j+1}=GAM{j+1}.*sy; end end gam = dyn_vech(GAM{1}); for j=1:nlags gam = [gam; vec(GAM{j+1})]; end end gam = [oo_.dr.ys(oo_.dr.order_var(mf)); gam]; % if useautocorr, warning('on','MATLAB:divideByZero') % end