function [PredictedStateMean, PredictedStateVarianceSquareRoot, StateVectorMean, StateVectorVarianceSquareRoot] = ... gaussian_filter_bank(ReducedForm, obs, StateVectorMean, StateVectorVarianceSquareRoot, Q_lower_triangular_cholesky, H_lower_triangular_cholesky, H, ... ParticleOptions, ThreadsOptions, DynareOptions, Model) % % Computes the proposal with a gaussian approximation for importance % sampling % This proposal is a gaussian distribution calculated à la Kalman % % INPUTS % reduced_form_model [structure] Matlab's structure describing the reduced form model. % reduced_form_model.measurement.H [double] (pp x pp) variance matrix of measurement errors. % reduced_form_model.state.Q [double] (qq x qq) variance matrix of state errors. % reduced_form_model.state.dr [structure] output of resol.m. % Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables. % % OUTPUTS % LIK [double] scalar, likelihood % lik [double] vector, density of observations in each period. % % REFERENCES % % NOTES % The vector "lik" is used to evaluate the jacobian of the likelihood. % Copyright © 2009-2022 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . order = DynareOptions.order; if ReducedForm.use_k_order_solver dr = ReducedForm.dr; udr = ReducedForm.udr; else % Set local state space model (first-order approximation). ghx = ReducedForm.ghx; ghu = ReducedForm.ghu; % Set local state space model (second-order approximation). ghxx = ReducedForm.ghxx; ghuu = ReducedForm.ghuu; ghxu = ReducedForm.ghxu; ghs2 = ReducedForm.ghs2; if order == 3 % Set local state space model (third order approximation). ghxxx = ReducedForm.ghxxx; ghuuu = ReducedForm.ghuuu; ghxxu = ReducedForm.ghxxu; ghxuu = ReducedForm.ghxuu; ghxss = ReducedForm.ghxss; ghuss = ReducedForm.ghuss; end end constant = ReducedForm.constant; steadystate = ReducedForm.steadystate; state_variables_steady_state = ReducedForm.state_variables_steady_state; mf0 = ReducedForm.mf0; mf1 = ReducedForm.mf1; number_of_state_variables = length(mf0); number_of_observed_variables = length(mf1); number_of_structural_innovations = length(ReducedForm.Q); if ParticleOptions.proposal_approximation.montecarlo nodes = randn(ParticleOptions.number_of_particles, number_of_state_variables+number_of_structural_innovations) ; weights = 1/ParticleOptions.number_of_particles ; weights_c = weights ; elseif ParticleOptions.proposal_approximation.cubature [nodes,weights] = spherical_radial_sigma_points(number_of_state_variables+number_of_structural_innovations) ; weights_c = weights ; elseif ParticleOptions.proposal_approximation.unscented [nodes,weights,weights_c] = unscented_sigma_points(number_of_state_variables+number_of_structural_innovations, ParticleOptions); else error('This approximation for the proposal is not implemented or unknown!') end xbar = [StateVectorMean ; zeros(number_of_structural_innovations,1)] ; sqr_Px = [ StateVectorVarianceSquareRoot, zeros(number_of_state_variables, number_of_structural_innovations); zeros(number_of_structural_innovations, number_of_state_variables) Q_lower_triangular_cholesky]; sigma_points = bsxfun(@plus, xbar, sqr_Px*(nodes')); StateVectors = sigma_points(1:number_of_state_variables,:); epsilon = sigma_points(number_of_state_variables+1:number_of_state_variables+number_of_structural_innovations,:); yhat = bsxfun(@minus, StateVectors, state_variables_steady_state); if ReducedForm.use_k_order_solver tmp = local_state_space_iteration_k(yhat, epsilon, dr, Model, DynareOptions, udr); else if order == 2 tmp = local_state_space_iteration_2(yhat, epsilon, ghx, ghu, constant, ghxx, ghuu, ghxu, ThreadsOptions.local_state_space_iteration_2); elseif order == 3 tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, false); else error('Order > 3: use_k_order_solver should be set to true'); end end PredictedStateMean = tmp(mf0,:)*weights; PredictedObservedMean = tmp(mf1,:)*weights; if ParticleOptions.proposal_approximation.cubature || ParticleOptions.proposal_approximation.montecarlo PredictedStateMean = sum(PredictedStateMean, 2); PredictedObservedMean = sum(PredictedObservedMean, 2); dState = bsxfun(@minus,tmp(mf0,:), PredictedStateMean)'.*sqrt(weights); dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean)'.*sqrt(weights); PredictedStateVarianceSquareRoot = chol(dState'*dState)'; big_mat = [dObserved, dState ; H_lower_triangular_cholesky, zeros(number_of_observed_variables,number_of_state_variables)]; [~, mat] = qr2(big_mat, 0); mat = mat'; PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables,1:number_of_observed_variables); CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables); StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables)); PredictionError = obs - PredictedObservedMean; StateVectorMean = PredictedStateMean + (CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*PredictionError; else dState = bsxfun(@minus, tmp(mf0,:), PredictedStateMean); dObserved = bsxfun(@minus, tmp(mf1,:), PredictedObservedMean); PredictedStateVariance = dState*diag(weights_c)*dState'; PredictedObservedVariance = dObserved*diag(weights_c)*dObserved' + H; PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved'; PredictedStateVarianceSquareRoot = chol(PredictedStateVariance)'; PredictionError = obs - PredictedObservedMean; KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance; StateVectorMean = PredictedStateMean + KalmanFilterGain*PredictionError; StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain'; StateVectorVariance = .5*(StateVectorVariance+StateVectorVariance'); StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)'; end