// This file replicates the estimation of the CIA model from // Frank Schorfheide (2000) "Loss function-based evaluation of DSGE models" // Journal of Applied Econometrics, 15, 645-670. // the data are the ones provided on Schorfheide's web site with the programs. // http://www.econ.upenn.edu/~schorf/programs/dsgesel.ZIP // You need to have fsdat.m in the same directory as this file. // This file replicates: // -the posterior mode as computed by Frank's Gauss programs // -the parameter mean posterior estimates reported in the paper // -the model probability (harmonic mean) reported in the paper // This file was tested with dyn_mat_test_0218.zip // the smooth shocks are probably stil buggy // // The equations are taken from J. Nason and T. Cogley (1994) // "Testing the implications of long-run neutrality for monetary business // cycle models" Journal of Applied Econometrics, 9, S37-S70. // Note that there is an initial minus sign missing in equation (A1), p. S63. // // Michel Juillard, February 2004 var m P c e W R k d n l gy_obs gp_obs y dA vv ww; varexo e_a e_m; parameters alp bet gam mst rho psi del; alp = 0.33; bet = 0.99; gam = 0.003; mst = 1.011; rho = 0.7; psi = 0.787; del = 0.02; toto = [2 3]; model(block, bytecode); //model(sparse); //model; /*0*/ exp(gam+e_a) = dA ; /*1*/ log(m) = (1-rho)*log(mst) + rho*log(m(-1))+e_m; /*2*/ -P/(c(+1)*P(+1)*m)+bet*P(+1)*(alp*exp(-alp*(gam+log(e(+1))))*k^(alp-1)*n(+1)^(1-alp)+(1-del)*exp(-(gam+log(e(+1)))))/(c(+2)*P(+2)*m(+1))=0; /*3*/ l/n = W; /*4*/ -(psi/(1-psi))*(c*P/(1-n))+l/n = 0; /*5*/ R = P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(-alp)/W; /*6*/ 1/(c*P)-bet*P*(1-alp)*exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)/(m*l*c(+1)*P(+1)) = 0; /*7*/ c+k = exp(-alp*(gam+e_a))*k(-1)^alp*n^(1-alp)+(1-del)*exp(-(gam+e_a))*k(-1); /*8*/ P*c = m; /*9*/ m-1+d = l; /*10*/ e = exp(e_a); /*11*/ k(-1)^alp*n^(1-alp)*exp(-alp*(gam+e_a)) = y ; /*12*/ gy_obs = dA*y/y(-1); /*13*/ gp_obs = (P/P(-1))*m(-1)/dA; /*14*/ vv = 0.2*ww+0.5*vv(-1)+1+c(-1)+e_a; /*15*/ ww = 0.1*vv+0.5*ww(-1)+2; /* A lt= 0.5*vv-0.2*ww = 1 -0.1*vv+0.5*ww = 2 [ 0.5 -0.2][vv] [1] = [-0.1 0.5][ww] [2] det = 0.25-0.02 = 0.23 [vv] [0.5 0.2] [1] [0.9] [3.91304] = 1/0.23* = 1/0.23* = [ww] [0.1 0.5] [2] [1.1] [4.7826] */ end; initval; k = 6; m = mst; P = 2.25; c = 0.45; e = 1; W = 4; R = 1.02; d = 0.85; n = 0.19; l = 0.86; y = 0.6; gy_obs = exp(gam); gp_obs = exp(-gam); dA = exp(gam); e_a=0; e_m=0; vv = 0; ww = 0; end; shocks; var e_a; stderr 0.014; var e_m; stderr 0.005; end; //options_.solve_tolf=1e-10; options_.maxit_=10; steady;//(block_mfs); model_info; //check; shocks; var e_a; periods 1; values 0.16; end; disp(toto(1,2)); simul(periods=20, method=lu); //stoch_simul(periods=200,order=1); rplot y; rplot k; rplot c; /*estimated_params; alp, beta_pdf, 0.356, 0.02; bet, beta_pdf, 0.993, 0.002; gam, normal_pdf, 0.0085, 0.003; mst, normal_pdf, 1.0002, 0.007; rho, beta_pdf, 0.129, 0.223; psi, beta_pdf, 0.65, 0.05; del, beta_pdf, 0.01, 0.005; stderr e_a, inv_gamma_pdf, 0.035449, inf; stderr e_m, inv_gamma_pdf, 0.008862, inf; end; varobs gp_obs gy_obs; estimation(datafile=fsdat,nobs=192,loglinear,mh_replic=2000,mh_nblocks=5,mh_jscale=0.8); */