function oo_=fill_mh_mode(xparam1,stdh,M_,options_,estim_params_,bayestopt_,oo_, field_name) %function oo_=fill_mh_mode(xparam1,stdh,M_,options_,estim_params_,bayestopt_,oo_, field_name) % % INPUTS % o xparam1 [double] (p*1) vector of estimate parameters. % o stdh [double] (p*1) vector of estimate parameters. % o M_ Matlab's structure describing the Model (initialized by dynare, see @ref{M_}). % o estim_params_ Matlab's structure describing the estimated_parameters (initialized by dynare, see @ref{estim_params_}). % o options_ Matlab's structure describing the options (initialized by dynare, see @ref{options_}). % o bayestopt_ Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}). % o oo_ Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}). % % OUTPUTS % o oo_ Matlab's structure gathering the results % % SPECIAL REQUIREMENTS % None. % Copyright © 2005-2021 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . nvx = estim_params_.nvx; % Variance of the structural innovations (number of parameters). nvn = estim_params_.nvn; % Variance of the measurement innovations (number of parameters). ncx = estim_params_.ncx; % Covariance of the structural innovations (number of parameters). ncn = estim_params_.ncn; % Covariance of the measurement innovations (number of parameters). np = estim_params_.np ; % Number of deep parameters. if np ip = nvx+nvn+ncx+ncn+1; for i=1:np name = bayestopt_.name{ip}; oo_.([field_name '_mode']).parameters.(name) = xparam1(ip); oo_.([field_name '_std_at_mode']).parameters.(name) = stdh(ip); ip = ip+1; end end if nvx ip = 1; for i=1:nvx k = estim_params_.var_exo(i,1); name = M_.exo_names{k}; oo_.([field_name '_mode']).shocks_std.(name)= xparam1(ip); oo_.([field_name '_std_at_mode']).shocks_std.(name) = stdh(ip); ip = ip+1; end end if nvn ip = nvx+1; for i=1:nvn name = options_.varobs{estim_params_.nvn_observable_correspondence(i,1)}; oo_.([field_name '_mode']).measurement_errors_std.(name) = xparam1(ip); oo_.([field_name '_std_at_mode']).measurement_errors_std.(name) = stdh(ip); ip = ip+1; end end if ncx ip = nvx+nvn+1; for i=1:ncx k1 = estim_params_.corrx(i,1); k2 = estim_params_.corrx(i,2); NAME = [M_.exo_names{k1} '_' M_.exo_names{k2}]; oo_.([field_name '_mode']).shocks_corr.(name) = xparam1(ip); oo_.([field_name '_std_at_mode']).shocks_corr.(name) = stdh(ip); ip = ip+1; end end if ncn ip = nvx+nvn+ncx+1; for i=1:ncn k1 = estim_params_.corrn(i,1); k2 = estim_params_.corrn(i,2); NAME = [M_.endo_names{k1} '_' M_.endo_names{k2}]; oo_.([field_name '_mode']).measurement_errors_corr.(name) = xparam1(ip); oo_.([field_name '_std_at_mode']).measurement_errors_corr.(name) = stdh(ip); ip = ip+1; end end