function adaptive_metropolis_hastings(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin) %function adaptive_metropolis_hastings(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin) % Random walk Metropolis-Hastings algorithm. % % INPUTS % o TargetFun [char] string specifying the name of the objective % function (posterior kernel). % o xparam1 [double] (p*1) vector of parameters to be estimated (initial values). % o vv [double] (p*p) matrix, posterior covariance matrix (at the mode). % o mh_bounds [double] (p*2) matrix defining lower and upper bounds for the parameters. % o varargin list of argument following mh_bounds % % OUTPUTS % None % % ALGORITHM % Metropolis-Hastings. % % SPECIAL REQUIREMENTS % None. % % PARALLEL CONTEXT % The most computationally intensive part of this function may be executed % in parallel. The code sutable to be executed in % parallel on multi core or cluster machine (in general a 'for' cycle), % is removed from this function and placed in random_walk_metropolis_hastings_core.m funtion. % Then the DYNARE parallel package contain a set of pairs matlab functions that can be executed in % parallel and called name_function.m and name_function_core.m. % In addition in parallel package we have second set of functions used % to manage the parallel computation. % % This function was the first function to be parallelized, later other % functions have been parallelized using the same methodology. % Then the comments write here can be used for all the other pairs of % parallel functions and also for management funtions. % Copyright (C) 2006-2011 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . global M_ options_ bayestopt_ estim_params_ oo_ old_options = options_; accept_target = options_.amh.accept_target; options_.mh_jscale = tune_scale_parameter(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin{:}); for i=1:options_.amh.cova_steps options_.mh_replic = options_.amh.cova_replic; random_walk_metropolis_hastings(TargetFun,ProposalFun, ... xparam1,vv,mh_bounds,varargin{:}); CutSample(M_,options_,estim_params_); [junk,vv] = compute_mh_covariance_matrix(); bayestopt_.jscale = tune_scale_parameter(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin{:}); end options_.mh_replic = old_options.mh_replic; record = random_walk_metropolis_hastings(TargetFun,ProposalFun, ... xparam1,vv,mh_bounds,varargin{:}); function selected_scale = tune_scale_parameter(TargetFun,ProposalFun,xparam1,vv,mh_bounds,varargin) global options_ bayestopt_ selected_scale = []; maxit = options_.amh.scale_tuning_maxit; accept_target = options_.amh.accept_target; test_runs = options_.amh.scale_tuning_test_runs; tolerance = options_.amh.scale_tuning_tolerance; Scales = zeros(maxit,1); AvRates = zeros(maxit,1); Scales(1) = options_.mh_jscale; for i=1:maxit options_.mh_replic = options_.amh.scale_tuning_blocksize; bayestopt_.jscale = Scales(i); record = random_walk_metropolis_hastings(TargetFun,ProposalFun, ... xparam1,vv, ... mh_bounds,varargin{:}); AvRates(i) = mean(record.AcceptationRates); disp(AvRates(1:i)') if i >= test_runs a_mean = mean(AvRates((i-test_runs+1):i)); if (a_mean > (1-tolerance)*accept_target) && ... (a_mean < (1+tolerance)*accept_target) selected_scale = mean(Scales((i-test_runs+1):i)); disp(['Selected scale: ' num2str(selected_scale)]) return end end if i == 1 if AvRates(1) > accept_target Scales(i+1) = 2*Scales(i); else Scales(i+1) = Scales(i)/2; end elseif i < maxit X = [ones(i,1) Scales(1:i)]; b = X\(AvRates(1:i)-accept_target); Scales(i+1) = -b(1)/b(2); if Scales(i+1) < 0.001 Scales(i+1) = 0.001; elseif Scales(i+1) > 2 Scales(i+1) = 2; end else error('AMH scale tuning: tuning didn''t converge') end options_.load_mh_file = 1; disp(Scales(1:i)') end