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Dynare incorporates routines for BVAR models estimation, that can be used
alone or in parallel with a DSGE estimation. This document describes their
implementation and usage.

If you are impatient to try the software and wish to skip mathematical
details, jump to section 5.

1 Model setting

Consider the following VAR(p) model:

y′t = y′t−1β1 + y′t−2β2 + . . .+ y′t−pβp + x′tα+ ut

where:

• t = 1 . . . T is the time index

• yt is a column vector of ny endogenous variables

• xt a column vector of nx exogenous variables

• the residuals ut ∼ N (0,Σu) are i.i.d. (with Σ a ny × ny matrix)

• β1, β2, . . . , βp are ny × ny matrices

• α is a nx× ny matrix

Note: in the actual implementation, exogenous variables xt only include a
constant, so that nx = 1 and x′t = (1, . . . , 1).

The matrix form of the model is:

Y = XΦ + U

where:

• Y and U are T × ny

• X is T × k where k = ny · p+ nx

• Φ is k × ny
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In other words:

Y =

 y1
...
yT

 X =

 y0 . . . y1−p x1

...
. . .

...
...

yT−1 . . . yT−p xT

 Φ =


β1

...
βp

α


2 Constructing the prior

We need a prior distribution over the parameters (Φ,Σ) before moving to
Bayesian estimation. This section describes the construction of the prior used
in Dynare implementation.

The prior is made of three components, which are described in the following
subsections.

2.1 Diffuse prior

The first component of the prior is, by default, Jeffreys’ improper prior:

p1(Φ,Σ) ∝ |Σ|−(ny+1)/2

However, it is possible to choose a flat prior by specifying option bvar prior flat.
In, that case:

p1(Φ,Σ) = const

2.2 Dummy observations prior

The second component of the prior is constructed from the likelihood of T ∗

dummy observations (Y ∗, X∗):

p2(Φ,Σ) ∝ |Σ|−T∗/2 exp
{
−1

2
Tr(Σ−1(Y ∗ −X∗Φ)′(Y ∗ −X∗Φ))

}
The dummy observations are constructed according to Sims’ version of the

Minnesota prior1.
Before constructing the dummy observations, one needs to choose values for

the following parameters:

• τ : the overall tightness of the prior. Large values imply a small prior
covariance matrix. Controlled by option bvar prior tau, with a default
of 3

• d: the decay factor for scaling down the coefficients of lagged values.
Controlled by option bvar prior decay, with a default of 0.5

• ω controls the tightness for the prior on Σ. Must be an integer. Controlled
by option bvar prior omega, with a default of 1

1See Doan, Litterman and Sims (1984).
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• λ and µ: additional tuning parameters, respectively controlled by option
bvar prior lambda (with a default of 5) and option bvar prior mu (with
a default of 2)

• based on a short presample Y 0 (in Dynare implementation, this presam-
ple consists of the p observations used to initialize the VAR), one also
calculates σ = std(Y 0) and ȳ = mean(Y 0)

Below is a description of the different dummy observations. For the sake of
simplicity, we should assume that ny = 2, nx = 1 and p = 3. The generalization
is straigthforward.

• Dummies for the coefficients on the first lag:[
τσ1 0
0 τσ2

]
=
[
τσ1 0 0 0 0 0 0
0 τσ2 0 0 0 0 0

]
Φ + U

• Dummies for the coefficients on the second lag:[
0 0
0 0

]
=
[

0 0 τσ12d 0 0 0 0
0 0 0 τσ22d 0 0 0

]
Φ + U

• Dummies for the coefficients on the third lag:[
0 0
0 0

]
=
[

0 0 0 0 τσ13d 0 0
0 0 0 0 0 τσ23d 0

]
Φ + U

• The prior for the covariance matrix is implemented by:[
σ1 0
0 σ2

]
=
[

0 0 0 0 0 0 0
0 0 0 0 0 0 0

]
Φ + U

These observations are replicated ω times.

• Co-persistence prior dummy observation, reflecting the belief that when
data on all y’s are stable at their initial levels, they will tend to persist at
that level:

[
λȳ1 λȳ2

]
=
[
λȳ1 λȳ2 λȳ1 λȳ2 λȳ1 λȳ2 λ

]
Φ + U

Note: in the implementation, if λ < 0, the exogenous variables will not be
included in the dummy. In that case, the dummy observation becomes:[
−λȳ1 −λȳ2

]
=
[
−λȳ1 −λȳ2 −λȳ1 −λȳ2 −λȳ1 −λȳ2 0

]
Φ+U

• Own-persistence prior dummy observations, reflecting the belief that when
yi has been stable at its initial level, it will tend to persist at that level,
regardless of the value of other variables:

[
µȳ1 0
0 µȳ2

]
=
[
µȳ1 0 µȳ1 0 µȳ1 0 0
0 µȳ2 0 µȳ2 0 µȳ2 0

]
Φ + U

This makes a total of T ∗ = ny · p + ny · ω + 1 + ny = ny · (p + ω + 1) + 1
dummy observations.
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2.3 Training sample prior

The third component of the prior is constructed from the likelihood of T−

observations (Y −, X−) extracted from the beginning of the sample:

p3(Φ,Σ) ∝ |Σ|−T−/2 exp
{
−1

2
Tr(Σ−1(Y − −X−Φ)′(Y − −X−Φ))

}
In other words, the complete sample is divided in two parts such that T =

T− + T+, Y =
[
Y −

Y +

]
and X =

[
X−

X+

]
.

The size of the training sample T− is controlled by option bvar prior train.
It is null by default.

3 Characterization of the prior and posterior
distributions

Notation: in the following, we will use a small “p” as superscript for notations
related to the prior, and a capital “P” for notations related to the posterior.

3.1 Prior distribution

We define the following notations:

• T p = T ∗ + T−

• Y p =
[
Y ∗

Y −

]

• Xp =
[
X∗

X−

]
• dfp = T p − k if p1 is Jeffrey’s prior, or dfp = T p − k − ny − 1 if p1 is a

constant

With these notations, one can see that the prior is:

p(Φ,Σ) = p1(Φ,Σ) · p2(Φ,Σ) · p3(Φ,Σ)

∝ |Σ|−(dfp+ny+1+k)/2 exp
{
−1

2
Tr(Σ−1(Y p −XpΦ)′(Y p −XpΦ))

}
We define the following notations:

• Φ̂p = (Xp′Xp)−1Xp′Y p the linear regression of Xp on Y p

• Sp = (Y p −XpΦ̂p)′(Y p −XpΦ̂p)

After some manipulations, one obtains:
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p(Φ,Σ) ∝ |Σ|−(dfp+ny+1+k)/2 exp
{
−1

2
Tr(Σ−1(Sp + (Φ− Φ̂p)′Xp′Xp(Φ− Φ̂p)))

}
∝ |Σ|−(dfp+ny+1)/2 exp

{
−1

2
Tr(Σ−1Sp)

}
×

|Σ|−k/2 exp
{
−1

2
Tr(Σ−1(Φ− Φ̂p)′Xp′Xp(Φ− Φ̂p)))

}
From the above decomposition, one can see that the prior distribution is

such that:

• Σ is distributed according to an inverse-Wishart distribution, with dfp

degrees of freedom and parameter Sp

• conditionally to Σ, matrix Φ is distributed according to a matrix-normal
distribution, with mean Φ̂p and variance-covariance parameters Σ and
(Xp′Xp)−1

Remark concerning the degrees of freedom of the inverse-Wishart: the inverse-
Wishart distribution requires the number of degrees of freedom to be greater or
equal than the number of variables, i.e. dfp ≥ ny. When the bvar prior flat
option is not specified, we have:

dfp = T p − k = ny · (p+ ω + 1) + 1 + T− − ny · p− nx = ny · (ω + 1) + T−

so that the condition is always fulfilled. When bvar prior flat option is spec-
ified, we have:

dfp = ny · w + T− − 1

so that with the defaults (ω = 1 and T− = 0) the condition is not met. The
user needs to increase either bvar prior omega or bvar prior train.

3.2 Posterior distribution

Using Bayes formula, the posterior density is given by:

p(Φ,Σ|Y +, X+) =
p(Y +|Φ,Σ, X+) · p(Φ,Σ)

p(Y +|X+)
(1)

The posterior kernel is:

p(Φ,Σ|Y +, X+) ∝ p(Y +|Φ,Σ, X+) · p(Φ,Σ)

Since the likelihood is given by:

p(Y +|Φ,Σ, X+) = (2π)−
T+·ny

2 |Σ|T
+
2 exp

{
−1

2
Tr(Σ−1(Y + −X+Φ)′(Y + −X+Φ))

}
We obtain the following posterior kernel, when combining with the prior:

p(Φ,Σ|Y +, X+) ∝ |Σ|−(dfP +ny+1+k)/2 exp
{
−1

2
Tr(Σ−1(Y P −XP Φ)′(Y P −XP Φ))

}
where:

5



• TP = T+ + T p = T+ + T− + T ∗

• Y P =
[
Y p

Y +

]
=

 Y ∗

Y −

Y +


• XP =

[
Xp

X+

]
=

 X∗

X−

X+


• dfP = dfp + T+. If p1 is Jeffrey’s prior, then dfP = TP − k. If p1 is a

constant, dfP = TP − k − ny − 1.

Using the same manipulations than for the prior, the posterior density can
be rewritten as:

p(Φ,Σ|Y +, X+) ∝ |Σ|−(dfP +ny+1)/2 exp
{
−1

2
Tr(Σ−1SP )

}
×

|Σ|−k/2 exp
{
−1

2
Tr(Σ−1(Φ− Φ̂P )′XP ′XP (Φ− Φ̂P )))

}
where:

• Φ̂P = (XP ′XP )−1XP ′Y P the linear regression of XP on Y P

• SP = (Y P −XP Φ̂P )′(Y P −XP Φ̂P )

From the above decomposition, one can see that the posterior distribution
is such that:

• Σ is distributed according to an inverse-Wishart distribution, with dfP

degrees of freedom and parameter SP

• conditionally to Σ, matrix Φ is distributed according to a matrix-normal
distribution, with mean Φ̂P and variance-covariance parameters Σ and
(XP ′XP )−1

Remark concerning the degrees of freedom of the inverse-Wishart: in theory,
the condition over the degrees of freedom of the inverse-Wishart may not be
satisfied. In practice, it is not a problem, since T+ is great.

4 Marginal density

By integrating equation (1) over (Φ,Σ), one gets:

p(Y +|X+) =
∫
p(Y +|Φ,Σ, X+) · p(Φ,Σ)dΦdΣ

We define the following notation for the unnormalized density of a matrix-
normal-inverse-Wishart:

f(Φ,Σ|df, S, Φ̂,Ω) = |Σ|−(df+ny+1)/2 exp
{
−1

2
Tr(Σ−1S)

}
×

|Σ|−k/2 exp
{
−1

2
Tr(Σ−1(Φ− Φ̂)′Ω−1(Φ− Φ̂)))

}
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We also note:

F (df, S, Φ̂,Ω) =
∫
f(Φ,Σ|df, S, Φ̂,Ω)dΦdΣ

The function F has an analytical form, which is given by the normalization
constants of matrix-normal and inverse-Wishart densities2:

F (df, S, Φ̂,Ω) = (2π)
ny·k

2 |Ω|
ny
2 · 2

ny·df
2 π

ny(ny−1)
4 |S|− df

2

ny∏
i=1

Γ
(

df + 1− i
2

)
The prior density is:

p(Φ,Σ) = cp · f(Φ,Σ|dfp, Sp, Φ̂p, (Xp′Xp)−1)

where the normalization constant is cp = F (dfp, Sp, Φ̂p, (Xp′Xp)−1).
Combining with the likelihood, one can see that the density is:

p(Y +|X+) =
∫

(2π)−
T+·ny

2 f(Φ,Σ|dfP , SP , Φ̂P , (XP ′XP )−1)dΦdΣ

F (dfp, Sp, Φ̂p, (Xp′Xp)−1)

=
(2π)−

T+·ny
2 F (dfP , SP , Φ̂P , (XP ′XP )−1)
F (dfp, Sp, Φ̂p, (Xp′Xp)−1)

5 Dynare commands

Dynare incorporates two commands related to BVAR models à la Sims:

• bvar density for computing marginal density,

• bvar forecast for forecasting (and RMSE computation).

5.1 Common options

The two commands share a set of common options, which can be divided in two
groups. They are described in the following subsections.

An important remark concerning options: in Dynare, all options are global.
This means that, if you have set an option in a given command, Dynare will
remember this setting for subsequent commands (unless you change it again).
For example, if you call bvar density with option bvar prior tau = 2, then
all subsequent bvar density and bvar forecast commands will assume a value
of 2 for bvar prior tau, unless you redeclare it. This remark also applies to
datafile and similar options, which means that you can run a BVAR estimation
after a Dynare estimation without having to respecify the datafile.

2Function matricint of file bvar density.m implements the calculation of the log of F .

7



5.1.1 Options related to the prior specification

They are:

• bvar prior tau (default: 3)

• bvar prior decay (default: 0.5)

• bvar prior lambda (default: 5)

• bvar prior mu (default: 2)

• bvar prior omega (default: 1)

• bvar prior flat (not enabled by default)

• bvar prior train (default: 0)

Please refer to section 2 for the discussion of their meaning.
Remark: when option bvar prior flat is specified, the condition over the

degrees of freedom of the inverse-Wishart distribution is not necessarily verified
(see section 3.1). One needs to increase either bvar prior omega or bvar prior train
in that case.

5.1.2 Options related to the estimated dataset

The options related to the estimated dataset are the same than for the estimation
command (please refer to the Dynare reference manual for more details):

• datafile

• first obs

• presample

• nobs

• prefilter (not yet implemented)

• xls sheet

• xls range

The (endogenous) variables of the BVAR model must be declared through
a varobs statement (see Dynare reference manual).

Restrictions related to the initialization of lags: in DSGE estimation rou-
tines, the likelihood (and therefore the marginal density) are evaluated starting
from the observation numbered first obs + presample in the datafile3. The
BVAR estimation routines use the same convention (i.e. the first observation of
Y + will be first obs + presample). Since we need p observations to initialize
the lags, and since we may also use a training sample, the user must ensure that
the following condition holds (estimation will fail otherwise):

first obs + presample > bvar prior train + number of lags
3first obs points to the first observation to be used in the datafile (defaults to 1), and

presample indicates how many observations after first obs will be used to initialize the
Kalman filter (defaults to 0).
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5.2 Marginal density

The syntax for computing the marginal density is:

bvar density(options list) max number of lags;

The options are those described above.
The command will actually compute the marginal density for several mod-

els: first for the model with one lag, then with two lags, and so on up to
max number of lags lags.

5.3 Forecasting

The syntax for computing forecasts is:

bvar density(options list) max number of lags;

The options are those describe above, plus a few ones:

• forecast: the number of periods over which to compute forecasts after
the end of the sample (no default)

• bvar replic: the number of replications for Monte-Carlo simulations (de-
fault: 2000)

• conf sig: confidence interval for graphs (default: 0.9)

The forecast option is mandatory.
The command will draw bvar replic random samples from the posterior

distribution. For each draw, it will simulate one path without shocks, and one
path with shocks.

It will produce one graph per observed variable. Each graph displays:

• a blue line for the mean forecast (equal to the mean of the simulated paths
by linearity),

• two green lines giving the confidence interval for the forecasts without
shocks,

• two red lines giving the confidence interval for the forecasts with shocks.

Morever, if option nobs is specified, the command will also compute root
mean squared error (RMSE) for all variables between end of sample and end of
datafile.

6 Examples

This section presents two short examples of BVAR estimations. These examples
and the associated datafile (test.xls) can be found in the tests/bvar a la sims
directory of the Dynare v4 subversion tree.
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6.1 Standalone BVAR estimation

Here is a simple mod file example for a standalone BVAR estimation:

var dx dy;
varobs dx dy;

bvar_density(datafile = test, first_obs = 20, bvar_prior_flat,
bvar_prior_train = 10) 8;

bvar_forecast(forecast = 10, bvar_replic = 10000, nobs = 200) 8;

Note that you must declare twice the variables used in the estimation: first
with a var statement, then with a varobs statement. This is necessary to have
a syntactically correct mod file.

The first component of the prior is flat. The prior also incorporates a training
sample. Note that the bvar prior * options also apply to the second command
since all options are global.

The bvar density command will compute marginal density for all models
from 1 up to 8 lags.

The bvar forecast command will compute forecasts for a BVAR model
with 8 lags, for 10 periods in the future, and with 10000 replications. Since
nobs is specified and is such that first obs + nobs - 1 is strictly less than
the number of observations in the datafile, the command will also compute
RMSE.

6.2 In parallel with a DSGE estimation

Here follows an example mod file, which performs both a DSGE and a BVAR
estimation:

var dx dy;
varexo e_x e_y;
parameters rho_x rho_y;

rho_x = 0.5;
rho_y = -0.3;

model;
dx = rho_x*dx(-1)+e_x;
dy = rho_y*dy(-1)+e_y;
end;

estimated_params;
rho_x,NORMAL_PDF,0.5,0.1;
rho_y,NORMAL_PDF,-0.3,0.1;
stderr e_x,INV_GAMMA_PDF,0.01,inf;
stderr e_y,INV_GAMMA_PDF,0.01,inf;
end;

varobs dx dy;
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check;

estimation(datafile = test, mh_replic = 1200, mh_jscale = 1.3,
first_obs = 9);

bvar_density 8;

bvar_forecast(forecast = 10, bvar_replic = 2000, nobs = 200) 8;

Note that the BVAR commands use the defaults for the prior, and take their
datafile and first obs options from the estimation command.
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