function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value) % Estimation of the smoothed variables and innovations. % % INPUTS % o xparam1 [double] (p*1) vector of (estimated) parameters. % o gend [integer] scalar specifying the number of observations ==> varargin{1}. % o data [double] (T*n) matrix of data. % o data_index [cell] 1*smpl cell of column vectors of indices. % o missing_value 1 if missing values, 0 otherwise % % OUTPUTS % o alphahat [double] (m*T) matrix, smoothed endogenous variables. % o etahat [double] (r*T) matrix, smoothed structural shocks (r>n is the umber of shocks). % o epsilonhat [double] (n*T) matrix, smoothed measurement errors. % o ahat [double] (m*T) matrix, one step ahead filtered (endogenous) variables. % o SteadyState [double] (m*1) vector specifying the steady state level of each endogenous variable. % o trend_coeff [double] (n*1) vector, parameters specifying the slope of the trend associated to each observed variable. % o aK [double] (K,n,T+K) array, k (k=1,...,K) steps ahead filtered (endogenous) variables. % o T and R [double] Matrices defining the state equation (T is the (m*m) transition matrix). % P: 3D array of one-step ahead forecast error variance % matrices % PK: 4D array of k-step ahead forecast error variance % matrices (meaningless for periods 1:d) % % ALGORITHM % Diffuse Kalman filter (Durbin and Koopman) % % SPECIAL REQUIREMENTS % None % Copyright (C) 2006-2011 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . global bayestopt_ M_ oo_ estim_params_ options_ alphahat = []; etahat = []; epsilonhat = []; ahat = []; SteadyState = []; trend_coeff = []; aK = []; T = []; R = []; P = []; PK = []; decomp = []; nobs = size(options_.varobs,1); smpl = size(Y,2); set_all_parameters(xparam1); %------------------------------------------------------------------------------ % 2. call model setup & reduction program %------------------------------------------------------------------------------ oo_.dr.restrict_var_list = bayestopt_.smoother_var_list; oo_.dr.restrict_columns = bayestopt_.smoother_restrict_columns; [T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_); bayestopt_.mf = bayestopt_.smoother_mf; if options_.noconstant constant = zeros(nobs,1); else if options_.loglinear == 1 constant = log(SteadyState(bayestopt_.mfys)); else constant = SteadyState(bayestopt_.mfys); end end trend_coeff = zeros(nobs,1); if bayestopt_.with_trend == 1 trend_coeff = zeros(nobs,1); t = options_.trend_coeffs; for i=1:length(t) if ~isempty(t{i}) trend_coeff(i) = evalin('base',t{i}); end end trend = constant*ones(1,gend)+trend_coeff*(1:gend); else trend = constant*ones(1,gend); end start = options_.presample+1; np = size(T,1); mf = bayestopt_.smoother_mf; % ------------------------------------------------------------------------------ % 3. Initial condition of the Kalman filter % ------------------------------------------------------------------------------ % % C'est ici qu'il faut déterminer Pinf et Pstar. Si le modèle est stationnaire, % alors il suffit de poser Pstar comme la solution de l'éuation de Lyapounov et % Pinf=[]. % Q = M_.Sigma_e; H = M_.H; if isequal(H,0) H = zeros(nobs,nobs); end kalman_algo = options_.kalman_algo; if options_.lik_init == 1 % Kalman filter if kalman_algo ~= 2 kalman_algo = 1; end Pstar = lyapunov_symm(T,R*Q*transpose(R),options_.qz_criterium,options_.lyapunov_complex_threshold); Pinf = []; elseif options_.lik_init == 2 % Old Diffuse Kalman filter if kalman_algo ~= 2 kalman_algo = 1; end Pstar = options_.Harvey_scale_factor*eye(np); Pinf = []; elseif options_.lik_init == 3 % Diffuse Kalman filter if kalman_algo ~= 4 kalman_algo = 3; end [Z,ST,R1,QT,Pstar,Pinf] = schur_statespace_transformation(mf,T,R,Q,options_.qz_criterium); elseif options_.lik_init == 4 % Start from the solution of the Riccati equation. [err, Pstar] = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(mf,np,nobs)),H); mexErrCheck('kalman_steady_state',err); Pinf = []; if kalman_algo~=2 kalman_algo = 1; end end kalman_tol = options_.kalman_tol; riccati_tol = options_.riccati_tol; data1 = Y-trend; % ----------------------------------------------------------------------------- % 4. Kalman smoother % ----------------------------------------------------------------------------- if ~missing_value for i=1:smpl data_index{i}=(1:nobs)'; end end if kalman_algo == 1 || kalman_algo == 2 ST = T; R1 = R; Z = zeros(nobs,size(T,2)); for i=1:nobs Z(i,mf(i)) = 1; end end if kalman_algo == 1 || kalman_algo == 3 [alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp] = missing_DiffuseKalmanSmootherH1_Z(ST, ... Z,R1,Q,H,Pinf,Pstar, ... data1,nobs,np,smpl,data_index, ... options_.nk,kalman_tol,options_.filter_decomposition); if isequal(alphahat,0) if kalman_algo == 1 kalman_algo = 2; elseif kalman_algo == 3 kalman_algo = 4; else error('This case shouldn''t happen') end end end if kalman_algo == 2 || kalman_algo == 4 if estim_params_.ncn ST = [ zeros(nobs,nobs) Z; zeros(np,nobs) T]; ns = size(Q,1); R1 = [ eye(nobs) zeros(nobs, ns); zeros(np,nobs) R]; Q = [H zeros(nobs,ns); zeros(ns,nobs) Q]; Z = [eye(nobs) zeros(nobs, np)]; if kalman_algo == 4 [Z,ST,R1,QT,Pstar,Pinf] = schur_statespace_transformation((1:nobs)',ST,R1,Q,options_.qz_criterium); end end [alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp] = missing_DiffuseKalmanSmootherH3_Z(ST, ... Z,R1,Q,diag(H), ... Pinf,Pstar,data1,nobs,np,smpl,data_index, ... options_.nk,kalman_tol,... options_.filter_decomposition); end if kalman_algo == 3 || kalman_algo == 4 alphahat = QT*alphahat; ahat = QT*ahat; nk = options_.nk; for jnk=1:nk aK(jnk,:,:) = QT*dynare_squeeze(aK(jnk,:,:)); for i=1:size(PK,4) PK(jnk,:,:,i) = QT*dynare_squeeze(PK(jnk,:,:,i))*QT'; end if options_.filter_decomposition for i=1:size(decomp,4) decomp(jnk,:,:,i) = QT*dynare_squeeze(decomp(jnk,:,:,i)); end end end for i=1:size(P,4) P(:,:,i) = QT*dynare_squeeze(P(:,:,i))*QT'; end end if estim_params_.ncn && (kalman_algo == 2 || kalman_algo == 4) % extracting measurement errors % removing observed variables from the state vector k = nobs+(1:np); alphahat = alphahat(k,:); ahat = ahat(k,:); aK = aK(:,k,:,:); if ~isempty(PK) PK = PK(:,k,k,:); end if ~isempty(decomp) decomp = decomp(:,k,:,:); end if ~isempty(P) P = P(k,k,:); end end