function oo_ = sim1_linear(options_, M_, oo_) % Solves a linear approximation of a perfect foresight model susing sparse matrix. % % INPUTS % - options_ [struct] contains various options. % - M_ [struct] contains a description of the model. % - oo_ [struct] contains results. % % OUTPUTS % - oo_ % Copyright (C) 2015 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . verbose = options_.verbosity; lead_lag_incidence = M_.lead_lag_incidence; ny = M_.endo_nbr; nx = M_.exo_nbr; maximum_lag = M_.maximum_lag; max_lag = M_.maximum_endo_lag; nyp = nnz(lead_lag_incidence(1,:)) ; ny0 = nnz(lead_lag_incidence(2,:)) ; nyf = nnz(lead_lag_incidence(3,:)) ; nd = nyp+ny0+nyf; % size of y (first argument passed to the dynamic file). periods = options_.periods; y_steady_state = oo_.steady_state; x_steady_state = oo_.exo_steady_state; params = M_.params; endo_simul = oo_.endo_simul; exo_simul = oo_.exo_simul; % Indices in A. ip = find(lead_lag_incidence(1,:)'); ic = find(lead_lag_incidence(2,:)'); in = find(lead_lag_incidence(3,:)'); icn = find(lead_lag_incidence(2:3,:)'); ipcn = find(lead_lag_incidence'); % Indices in y. jp = nonzeros(lead_lag_incidence(1,:)'); jc = nonzeros(lead_lag_incidence(2,:)'); jn = nonzeros(lead_lag_incidence(3,:)'); jpc = [jp; jc]; jcn = [jc; jn]; jexog = transpose(nd+(1:nx)); jendo = transpose(1:nd); i_upd = maximum_lag*ny+(1:periods*ny); % Center the endogenous and exogenous variables around the deterministic steady state. endo_simul = bsxfun(@minus,endo_simul,y_steady_state); exo_simul =bsxfun(@minus,exo_simul,transpose(x_steady_state)); Y = endo_simul(:); if verbose skipline() printline(80) disp('MODEL SIMULATION:') skipline() end model_dynamic = str2func([M_.fname,'_dynamic']); z = y_steady_state([ip; ic; in]); % Evaluate the Jacobian of the dynamic model at the deterministic steady state. [d1,jacobian] = model_dynamic(z,transpose(x_steady_state), params, y_steady_state,1); % Check that the dynamic model was evaluated at the steady state. if max(abs(d1))>1e-12 error('Jacobian is not evaluated at the steady state!') end [rT,cT,vT] = find(jacobian(:,jpc)); [r1,c1,v1] = find(jacobian(:,jcn)); [rr,cc,vv] = find(jacobian(:,jendo)); ivT = 1:length(vT); iv1 = 1:length(v1); iv = 1:length(vv); % Initialize the vector of residuals. res = zeros(periods*ny,1); % Initialize the sparse Jacobian. iA = zeros(periods*M_.NNZDerivatives(1),3); h2 = clock ; i_rows = (1:ny)'; i_cols_A = ipcn; i_cols = ipcn+(maximum_lag-1)*ny; m = 0; for it = (maximum_lag+1):(maximum_lag+periods) if it == maximum_lag+periods nv = length(vT); iA(ivT+m,:) = [i_rows(rT),i_cols_A(jpc(cT)),vT]; elseif it == maximum_lag+1 nv = length(v1); iA(iv1+m,:) = [i_rows(r1),icn(c1),v1]; else nv = length(vv); iA(iv+m,:) = [i_rows(rr),i_cols_A(cc),vv]; end z(jendo) = Y(i_cols); z(jexog) = transpose(exo_simul(it,:)); res(i_rows) = jacobian*z; m = m + nv; i_rows = i_rows + ny; i_cols = i_cols + ny; if it > maximum_lag+1 i_cols_A = i_cols_A + ny; end end % Evaluation of the maximum residual at the initial guess (steady state for the endogenous variables). err = max(abs(res)); if options_.debug fprintf('\nLargest absolute residual at iteration %d: %10.3f\n',1,err); if any(isnan(res)) || any(isinf(res)) || any(isnan(Y)) || any(isinf(Y)) fprintf('\nWARNING: NaN or Inf detected in the residuals or endogenous variables.\n'); end if ~isreal(res) || ~isreal(Y) fprintf('\nWARNING: Imaginary parts detected in the residuals or endogenous variables.\n'); end skipline() end iA = iA(1:m,:); A = sparse(iA(:,1),iA(:,2),iA(:,3),periods*ny,periods*ny); % Try to update the vector of endogenous variables. try Y(i_upd) = Y(i_upd) - A\res; catch % Normally, because the model is linear, the solution of the perfect foresight model should % be obtained in one Newton step. This is not the case if the model is singular. oo_.deterministic_simulation.status = false; oo_.deterministic_simulation.error = NaN; oo_.deterministic_simulation.iterations = 1; if verbose skipline() disp('Singularity problem! The jacobian matrix of the stacked model cannot be inverted.') end return end i_cols = ipcn+(maximum_lag-1)*ny; i_rows = (1:ny)'; for it = (maximum_lag+1):(maximum_lag+periods) z(jendo) = Y(i_cols); z(jexog) = transpose(exo_simul(it,:)); m = m + nv; res(i_rows) = jacobian*z; i_rows = i_rows + ny; i_cols = i_cols + ny; end ERR = max(abs(res)); if verbose fprintf('Iter: %s,\t Initial err. = %s,\t err. = %s,\t time = %s\n',num2str(1),num2str(err),num2str(ERR), num2str(etime(clock,h2))); printline(80); end if any(isnan(res)) || any(isinf(res)) || any(isnan(Y)) || any(isinf(Y)) || ~isreal(res) || ~isreal(Y) oo_.deterministic_simulation.status = false;% NaN or Inf occurred oo_.deterministic_simulation.error = ERR; oo_.deterministic_simulation.iterations = 1; oo_.endo_simul = reshape(Y,ny,periods+maximum_lag+M_.maximum_lead); if verbose skipline() if ~isreal(res) || ~isreal(Y) disp('Simulation terminated with imaginary parts in the residuals or endogenous variables.') else disp('Simulation terminated with NaN or Inf in the residuals or endogenous variables.') end disp('There is most likely something wrong with your model. Try model_diagnostics or another simulation method.') end else oo_.deterministic_simulation.status = true;% Convergency obtained. oo_.deterministic_simulation.error = ERR; oo_.deterministic_simulation.iterations = 1; oo_.endo_simul = bsxfun(@plus,reshape(Y,ny,periods+maximum_lag+M_.maximum_lead),y_steady_state); end if verbose skipline(); end