function [alphahat,etahat,epsilonhat,ahat,SteadyState,trend_coeff,aK,T,R,P,PK,decomp] = DsgeSmoother(xparam1,gend,Y,data_index,missing_value) % Estimation of the smoothed variables and innovations. % % INPUTS % o xparam1 [double] (p*1) vector of (estimated) parameters. % o gend [integer] scalar specifying the number of observations ==> varargin{1}. % o data [double] (T*n) matrix of data. % o data_index [cell] 1*smpl cell of column vectors of indices. % o missing_value 1 if missing values, 0 otherwise % % OUTPUTS % o alphahat [double] (m*T) matrix, smoothed endogenous variables. % o etahat [double] (r*T) matrix, smoothed structural shocks (r>n is the umber of shocks). % o epsilonhat [double] (n*T) matrix, smoothed measurement errors. % o ahat [double] (m*T) matrix, one step ahead filtered (endogenous) variables. % o SteadyState [double] (m*1) vector specifying the steady state level of each endogenous variable. % o trend_coeff [double] (n*1) vector, parameters specifying the slope of the trend associated to each observed variable. % o aK [double] (K,n,T+K) array, k (k=1,...,K) steps ahead filtered (endogenous) variables. % o T and R [double] Matrices defining the state equation (T is the (m*m) transition matrix). % o P: 3D array of one-step ahead forecast error variance % matrices % o PK: 4D array of k-step ahead forecast error variance % matrices (meaningless for periods 1:d) % o decomp 4D array of shock decomposition of k-step ahead % filtered variables % % ALGORITHM % Diffuse Kalman filter (Durbin and Koopman) % % SPECIAL REQUIREMENTS % None % Copyright (C) 2006-2014 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . global bayestopt_ M_ oo_ estim_params_ options_ alphahat = []; etahat = []; epsilonhat = []; ahat = []; SteadyState = []; trend_coeff = []; aK = []; T = []; R = []; P = []; PK = []; decomp = []; vobs = length(options_.varobs); smpl = size(Y,2); if ~isempty(xparam1) %not calibrated model M_ = set_all_parameters(xparam1,estim_params_,M_); end %------------------------------------------------------------------------------ % 2. call model setup & reduction program %------------------------------------------------------------------------------ oldoo.restrict_var_list = oo_.dr.restrict_var_list; oldoo.restrict_columns = oo_.dr.restrict_columns; oo_.dr.restrict_var_list = bayestopt_.smoother_var_list; oo_.dr.restrict_columns = bayestopt_.smoother_restrict_columns; [T,R,SteadyState,info,M_,options_,oo_] = dynare_resolve(M_,options_,oo_); oo_.dr.restrict_var_list = oldoo.restrict_var_list; oo_.dr.restrict_columns = oldoo.restrict_columns; bayestopt_.mf = bayestopt_.smoother_mf; if options_.noconstant constant = zeros(vobs,1); else if options_.loglinear constant = log(SteadyState(bayestopt_.mfys)); else constant = SteadyState(bayestopt_.mfys); end end trend_coeff = zeros(vobs,1); if bayestopt_.with_trend == 1 trend_coeff = zeros(vobs,1); t = options_.trend_coeffs; for i=1:length(t) if ~isempty(t{i}) trend_coeff(i) = evalin('base',t{i}); end end trend = constant*ones(1,gend)+trend_coeff*(1:gend); else trend = constant*ones(1,gend); end start = options_.presample+1; np = size(T,1); mf = bayestopt_.smoother_mf; % ------------------------------------------------------------------------------ % 3. Initial condition of the Kalman filter % ------------------------------------------------------------------------------ % % C'est ici qu'il faut déterminer Pinf et Pstar. Si le modèle est stationnaire, % alors il suffit de poser Pstar comme la solution de l'éuation de Lyapounov et % Pinf=[]. % Q = M_.Sigma_e; H = M_.H; if isequal(H,0) H = zeros(vobs,vobs); end kalman_algo = options_.kalman_algo; if options_.lik_init == 1 % Kalman filter if kalman_algo ~= 2 kalman_algo = 1; end if options_.lyapunov_fp == 1 Pstar = lyapunov_symm(T,R*Q*R',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, 3, [], options_.debug); elseif options_.lyapunov_db == 1 Pstar = disclyap_fast(T,R*Q*R',options_.lyapunov_doubling_tol); elseif options_.lyapunov_srs == 1 Pstar = lyapunov_symm(T,Q,options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, 4, R, options_.debug); else Pstar = lyapunov_symm(T,R*Q*R',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, [], [], options_.debug); end; Pinf = []; elseif options_.lik_init == 2 % Old Diffuse Kalman filter if kalman_algo ~= 2 kalman_algo = 1; end Pstar = options_.Harvey_scale_factor*eye(np); Pinf = []; elseif options_.lik_init == 3 % Diffuse Kalman filter if kalman_algo ~= 4 kalman_algo = 3; end [Z,ST,R1,QT,Pstar,Pinf] = schur_statespace_transformation(mf,T,R,Q,options_.qz_criterium,oo_.dr.restrict_var_list); Pinf = QT*Pinf*QT'; Pstar = QT*Pstar*QT'; elseif options_.lik_init == 4 % Start from the solution of the Riccati equation. [err, Pstar] = kalman_steady_state(transpose(T),R*Q*transpose(R),transpose(build_selection_matrix(mf,np,vobs)),H); mexErrCheck('kalman_steady_state',err); Pinf = []; if kalman_algo~=2 kalman_algo = 1; end elseif options_.lik_init == 5 % Old diffuse Kalman filter only for the non stationary variables [eigenvect, eigenv] = eig(T); eigenv = diag(eigenv); nstable = length(find(abs(abs(eigenv)-1) > 1e-7)); unstable = find(abs(abs(eigenv)-1) < 1e-7); V = eigenvect(:,unstable); indx_unstable = find(sum(abs(V),2)>1e-5); stable = find(sum(abs(V),2)<1e-5); nunit = length(eigenv) - nstable; Pstar = options_.Harvey_scale_factor*eye(np); if kalman_algo ~= 2 kalman_algo = 1; end R_tmp = R(stable, :); T_tmp = T(stable,stable); if options_.lyapunov_fp == 1 Pstar_tmp = lyapunov_symm(T_tmp,R_tmp*Q*R_tmp',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, 3, [], options_.debug); elseif options_.lyapunov_db == 1 Pstar_tmp = disclyap_fast(T_tmp,R_tmp*Q*R_tmp',options_.lyapunov_doubling_tol); elseif options_.lyapunov_srs == 1 Pstar_tmp = lyapunov_symm(T_tmp,Q,options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, 4, R_tmp, options_.debug); else Pstar_tmp = lyapunov_symm(T_tmp,R_tmp*Q*R_tmp',options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, [], [], options_.debug); end Pstar(stable, stable) = Pstar_tmp; Pinf = []; end kalman_tol = options_.kalman_tol; diffuse_kalman_tol = options_.diffuse_kalman_tol; riccati_tol = options_.riccati_tol; data1 = Y-trend; % ----------------------------------------------------------------------------- % 4. Kalman smoother % ----------------------------------------------------------------------------- if ~missing_value for i=1:smpl data_index{i}=(1:vobs)'; end end ST = T; R1 = R; Z = zeros(vobs,size(T,2)); for i=1:vobs Z(i,mf(i)) = 1; end if kalman_algo == 1 || kalman_algo == 3 [alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp] = missing_DiffuseKalmanSmootherH1_Z(ST, ... Z,R1,Q,H,Pinf,Pstar, ... data1,vobs,np,smpl,data_index, ... options_.nk,kalman_tol,diffuse_kalman_tol,options_.filter_decomposition); if isinf(alphahat) if kalman_algo == 1 kalman_algo = 2; elseif kalman_algo == 3 kalman_algo = 4; else error('This case shouldn''t happen') end end end if kalman_algo == 2 || kalman_algo == 4 if estim_params_.ncn ST = [ zeros(vobs,vobs) Z; zeros(np,vobs) T]; ns = size(Q,1); R1 = [ eye(vobs) zeros(vobs, ns); zeros(np,vobs) R]; Q = [H zeros(vobs,ns); zeros(ns,vobs) Q]; Z = [eye(vobs) zeros(vobs, np)]; if kalman_algo == 4 [Z,ST,R1,QT,Pstar,Pinf] = schur_statespace_transformation((1:vobs)',ST,R1,Q,options_.qz_criterium); end end [alphahat,epsilonhat,etahat,ahat,P,aK,PK,decomp] = missing_DiffuseKalmanSmootherH3_Z(ST, ... Z,R1,Q,diag(H), ... Pinf,Pstar,data1,vobs,np,smpl,data_index, ... options_.nk,kalman_tol,diffuse_kalman_tol, ... options_.filter_decomposition); end if estim_params_.ncn && (kalman_algo == 2 || kalman_algo == 4) % extracting measurement errors % removing observed variables from the state vector k = vobs+(1:np); alphahat = alphahat(k,:); ahat = ahat(k,:); aK = aK(:,k,:,:); if ~isempty(PK) PK = PK(:,k,k,:); end if ~isempty(decomp) decomp = decomp(:,k,:,:); end if ~isempty(P) P = P(k,k,:); end end