@q $Id: t_polynomial.hweb 2336 2009-01-14 10:37:02Z kamenik $ @> @q Copyright 2004, Ondra Kamenik @> @*2 Tensor polynomial evaluation. Start of {\tt t\_polynomial.h} file. We need to evaluate a tensor polynomial of the form: $$ \left[g_{x}\right]_{\alpha_1}[x]^{\alpha_1}+ \left[g_{x^2}\right]_{\alpha_1\alpha_2}[x]^{\alpha_1}[x]^{\alpha_2}+ \ldots+ \left[g_{x^n}\right]_{\alpha_1\ldots\alpha_n}\prod_{i=1}^n[x]^{\alpha_i} $$ where $x$ is a column vector. We have basically two options. The first is to use the formula above, the second is to use a Horner-like formula: $$ \left[\cdots\left[\left[\left[g_{x^{n-1}}\right]+ \left[g_{x^n}\right]_{\alpha_1\ldots\alpha_{n-1}\alpha_n} [x]^{\alpha_n}\right]_{\alpha_1\ldots\alpha_{n-2}\alpha_{n-1}} [x]^{\alpha_{n-1}}\right]\cdots\right]_{\alpha_1} [x]^{\alpha_1} $$ Alternativelly, we can put the the polynomial into a more compact form $$\left[g_{x}\right]_{\alpha_1}[x]^{\alpha_1}+ \left[g_{x^2}\right]_{\alpha_1\alpha_2}[x]^{\alpha_1}[x]^{\alpha_2}+ \ldots+ \left[g_{x^n}\right]_{\alpha_1\ldots\alpha_n}\prod_{i=1}^n[x]^{\alpha_i} = [G]_{\alpha_1\ldots\alpha_n}\prod_{i=1}^n\left[\matrix{1\cr x}\right]^{\alpha_i} $$ Then the polynomial evaluation becomes just a matrix multiplication of the vector power. Here we define the tensor polynomial as a container of full symmetry tensors and add an evaluation methods. We have two sorts of containers, folded and unfolded. For each type we declare two methods implementing the above formulas. We define classes for the compactification of the polynomial. The class derives from the tensor and has a eval method. @s PowerProvider int @s TensorPolynomial int @s UTensorPolynomial int @s FTensorPolynomial int @s CompactPolynomial int @s UCompactPolynomial int @s FCompactPolynomial int @c #include "t_container.h" #include "fs_tensor.h" #include "rfs_tensor.h" #include"tl_static.h" @<|PowerProvider| class declaration@>; @<|TensorPolynomial| class declaration@>; @<|UTensorPolynomial| class declaration@>; @<|FTensorPolynomial| class declaration@>; @<|CompactPolynomial| class declaration@>; @<|UCompactPolynomial| class declaration@>; @<|FCompactPolynomial| class declaration@>; @ Just to make the code nicer, we implement a Kronecker power of a vector encapsulated in the following class. It has |getNext| method which returns either folded or unfolded row-oriented single column Kronecker power of the vector according to the type of a dummy argument. This allows us to use the type dependent code in templates below. The implementation of the Kronecker power is that we maintain the last unfolded power. If unfolded |getNext| is called, we Kronecker multiply the last power with a vector and return it. If folded |getNext| is called, we do the same plus we fold it. |getNext| returns the vector for the first call (first power), the second power is returned on the second call, and so on. @<|PowerProvider| class declaration@>= class PowerProvider { Vector origv; URSingleTensor* ut; FRSingleTensor* ft; int nv; public:@; PowerProvider(const ConstVector& v) : origv(v), ut(NULL), ft(NULL), nv(v.length())@+ {} ~PowerProvider(); const URSingleTensor& getNext(const URSingleTensor* dummy); const FRSingleTensor& getNext(const FRSingleTensor* dummy); }; @ The tensor polynomial is basically a tensor container which is more strict on insertions. It maintains number of rows and number of variables and allows insertions only of those tensors, which yield these properties. The maximum dimension is maintained by |insert| method. So we re-implement |insert| method and implement |evalTrad| (traditional polynomial evaluation) and horner-like evaluation |evalHorner|. In addition, we implement derivatives of the polynomial and its evaluation. The evaluation of a derivative is different from the evaluation of the whole polynomial, simply because the evaluation of the derivatives is a tensor, and the evaluation of the polynomial is a vector (zero dimensional tensor). See documentation to |@<|TensorPolynomial::derivative| code@>| and |@<|TensorPolynomial::evalPartially| code@>| for details. @s _Stype int @s _TGStype int @<|TensorPolynomial| class declaration@>= template @; class TensorPolynomial : public TensorContainer<_Ttype> { int nr; int nv; int maxdim; typedef TensorContainer<_Ttype> _Tparent; typedef typename _Tparent::_ptr _ptr; public:@; TensorPolynomial(int rows, int vars) : TensorContainer<_Ttype>(1), nr(rows), nv(vars), maxdim(0) {} TensorPolynomial(const TensorPolynomial<_Ttype, _TGStype, _Stype>& tp, int k) : TensorContainer<_Ttype>(tp), nr(tp.nr), nv(tp.nv), maxdim(0) {@+ derivative(k);@+} TensorPolynomial(int first_row, int num, TensorPolynomial<_Ttype, _TGStype, _Stype>& tp) : TensorContainer<_Ttype>(first_row, num, tp), nr(num), nv(tp.nv), maxdim(tp.maxdim)@+ {} @<|TensorPolynomial| contract constructor code@>; TensorPolynomial(const TensorPolynomial& tp) : TensorContainer<_Ttype>(tp), nr(tp.nr), nv(tp.nv), maxdim(tp.maxdim)@+ {} int nrows() const {@+ return nr;@+} int nvars() const {@+ return nv;@+} @<|TensorPolynomial::evalTrad| code@>; @<|TensorPolynomial::evalHorner| code@>; @<|TensorPolynomial::insert| code@>; @<|TensorPolynomial::derivative| code@>; @<|TensorPolynomial::evalPartially| code@>; }; @ This constructor takes a tensor polynomial $$P(x,y)=\sum^m_{k=0}[g_{(xy)^k}]_{\alpha_1\ldots\alpha_k} \left[\matrix{x\cr y}\right]^{\alpha_1\ldots\alpha_k}$$ and for a given $x$ it makes a polynomial $$Q(y)=P(x,y).$$ The algorithm for each full symmetry $(xy)^k$ works with subtensors (slices) of symmetry $x^iy^j$ (with $i+j=k$), and contracts these subtensors with respect to $x^i$ to obtain a tensor of full symmetry $y^j$. Since the column $x^i$ is calculated by |PowerProvider| we cycle for $i=1,...,m$. Then we have to add everything for $i=0$. The code works as follows: For slicing purposes we need stack sizes |ss| corresponing to lengths of $x$ and $y$, and then identity |pp| for unfolding a symmetry of the slice to obtain stack coordinates of the slice. Then we do the calculations for $i=1,\ldots,m$ and then for $i=0$. @<|TensorPolynomial| contract constructor code@>= TensorPolynomial(const TensorPolynomial<_Ttype, _TGStype, _Stype>& tp, const Vector& xval) : TensorContainer<_Ttype>(1), nr(tp.nrows()), nv(tp.nvars() - xval.length()), maxdim(0) { TL_RAISE_IF(nvars() < 0, "Length of xval too big in TensorPolynomial contract constructor"); IntSequence ss(2);@+ ss[0] = xval.length();@+ ss[1] = nvars(); IntSequence pp(2);@+ pp[0] = 0;@+ pp[1] = 1; @0$@>; @; } @ Here we setup the |PowerProvider|, and cycle through $i=1,\ldots,m$. Within the loop we cycle through $j=0,\ldots,m-i$. If there is a tensor with symmetry $(xy)^{i+j}$ in the original polynomial, we make its slice with symmetry $x^iy^j$, and |contractAndAdd| it to the tensor |ten| in the |this| polynomial with a symmetry $y^j$. Note three things: First, the tensor |ten| is either created and put to |this| container or just got from the container, this is done in |@|. Second, the contribution to the |ten| tensor must be multiplied by $\left(\matrix{i+j\cr j}\right)$, since there are exactly that number of slices of $(xy)^{i+j}$ of the symmetry $x^iy^j$ and all must be added. Third, the tensor |ten| is fully symmetric and |_TGStype::contractAndAdd| works with general symmetry, that is why we have to in-place convert fully syummetric |ten| to a general symmetry tensor. @0$@>= PowerProvider pwp(xval); for (int i = 1; i <= tp.maxdim; i++) { const _Stype& xpow = pwp.getNext((const _Stype*)NULL); for (int j = 0; j <= tp.maxdim-i; j++) { if (tp.check(Symmetry(i+j))) { @; Symmetry sym(i,j); IntSequence coor(sym, pp); _TGStype slice(*(tp.get(Symmetry(i+j))), ss, coor, TensorDimens(sym, ss)); slice.mult(Tensor::noverk(i+j, j)); _TGStype tmp(*ten); slice.contractAndAdd(0, tmp, xpow); } } } @ This is easy. The code is equivalent to code |@0$@>| as for $i=0$. The contraction here takes a form of a simple addition. @= for (int j = 0; j <= tp.maxdim; j++) { if (tp.check(Symmetry(j))) { @; Symmetry sym(0, j); IntSequence coor(sym, pp); _TGStype slice(*(tp.get(Symmetry(j))), ss, coor, TensorDimens(sym, ss)); ten->add(1.0, slice); } } @ The pointer |ten| is either a new tensor or got from |this| container. @= _Ttype* ten; if (_Tparent::check(Symmetry(j))) { ten = _Tparent::get(Symmetry(j)); } else { ten = new _Ttype(nrows(), nvars(), j); ten->zeros(); insert(ten); } @ Here we cycle up to the maximum dimension, and if a tensor exists in the container, then we multiply it with the Kronecker power of the vector supplied by |PowerProvider|. @<|TensorPolynomial::evalTrad| code@>= void evalTrad(Vector& out, const ConstVector& v) const { if (_Tparent::check(Symmetry(0))) out = _Tparent::get(Symmetry(0))->getData(); else out.zeros(); PowerProvider pp(v); for (int d = 1; d <= maxdim; d++) { const _Stype& p = pp.getNext((const _Stype*)NULL); Symmetry cs(d); if (_Tparent::check(cs)) { const _Ttype* t = _Tparent::get(cs); t->multaVec(out, p.getData()); } } } @ Here we construct by contraction |maxdim-1| tensor first, and then cycle. The code is clear, the only messy thing is |new| and |delete|. @<|TensorPolynomial::evalHorner| code@>= void evalHorner(Vector& out, const ConstVector& v) const { if (_Tparent::check(Symmetry(0))) out = _Tparent::get(Symmetry(0))->getData(); else out.zeros(); if (maxdim == 0) return; _Ttype* last; if (maxdim == 1) last = new _Ttype(*(_Tparent::get(Symmetry(1)))); else last = new _Ttype(*(_Tparent::get(Symmetry(maxdim))), v); for (int d = maxdim-1; d >=1; d--) { Symmetry cs(d); if (_Tparent::check(cs)) { const _Ttype* nt = _Tparent::get(cs); last->add(1.0, ConstTwoDMatrix(*nt)); } if (d > 1) { _Ttype* new_last = new _Ttype(*last, v); delete last; last = new_last; } } last->multaVec(out, v); delete last; } @ Before a tensor is inserted, we check for the number of rows, and number of variables. Then we insert and update the |maxdim|. @<|TensorPolynomial::insert| code@>= void insert(_ptr t) { TL_RAISE_IF(t->nrows() != nr, "Wrong number of rows in TensorPolynomial::insert"); TL_RAISE_IF(t->nvar() != nv, "Wrong number of variables in TensorPolynomial::insert"); TensorContainer<_Ttype>::insert(t); if (maxdim < t->dimen()) maxdim = t->dimen(); } @ The polynomial takes the form $$\sum_{i=0}^n{1\over i!}\left[g_{y^i}\right]_{\alpha_1\ldots\alpha_i} \left[y\right]^{\alpha_1}\ldots\left[y\right]^{\alpha_i},$$ where $\left[g_{y^i}\right]$ are $i$-order derivatives of the polynomial. We assume that ${1\over i!}\left[g_{y^i}\right]$ are items in the tensor container. This method differentiates the polynomial by one order to yield: $$\sum_{i=1}^n{1\over i!}\left[i\cdot g_{y^i}\right]_{\alpha_1\ldots\alpha_i} \left[y\right]^{\alpha_1}\ldots\left[y\right]^{\alpha_{i-1}},$$ where $\left[i\cdot{1\over i!}\cdot g_{y^i}\right]$ are put to the container. A polynomial can be derivative of some order, and the order cannot be recognized from the object. That is why we need to input the order. @<|TensorPolynomial::derivative| code@>= void derivative(int k) { for (int d = 1; d <= maxdim; d++) { if (_Tparent::check(Symmetry(d))) { _Ttype* ten = _Tparent::get(Symmetry(d)); ten->mult((double) max((d-k), 0)); } } } @ Now let us suppose that we have an |s| order derivative of a polynomial whose $i$ order derivatives are $\left[g_{y^i}\right]$, so we have $$\sum_{i=s}^n{1\over i!}\left[g_{y^i}\right]_{\alpha_1\ldots\alpha_i} \prod_{k=1}^{i-s}\left[y\right]^{\alpha_k},$$ where ${1\over i!}\left[g_{y^i}\right]$ are tensors in the container. This methods performs this evaluation. The result is an |s| dimensional tensor. Note that when combined with the method |derivative|, they evaluate a derivative of some order. For example a sequence of calls |g.derivative(0)|, |g.derivative(1)| and |der=g.evalPartially(2, v)| calculates $2!$ multiple of the second derivative of |g| at |v|. @<|TensorPolynomial::evalPartially| code@>= _Ttype* evalPartially(int s, const ConstVector& v) { TL_RAISE_IF(v.length() != nvars(), "Wrong length of vector for TensorPolynomial::evalPartially"); _Ttype* res = new _Ttype(nrows(), nvars(), s); res->zeros(); if (_Tparent::check(Symmetry(s))) res->add(1.0, *(_Tparent::get(Symmetry(s)))); for (int d = s+1; d <= maxdim; d++) { if (_Tparent::check(Symmetry(d))) { const _Ttype& ltmp = *(_Tparent::get(Symmetry(d))); _Ttype* last = new _Ttype(ltmp); for (int j = 0; j < d - s; j++) { _Ttype* newlast = new _Ttype(*last, v); delete last; last = newlast; } res->add(1.0, *last); delete last; } } return res; } @ This just gives a name to unfolded tensor polynomial. @<|UTensorPolynomial| class declaration@>= class FTensorPolynomial; class UTensorPolynomial : public TensorPolynomial { public:@; UTensorPolynomial(int rows, int vars) : TensorPolynomial(rows, vars)@+ {} UTensorPolynomial(const UTensorPolynomial& up, int k) : TensorPolynomial(up, k)@+ {} UTensorPolynomial(const FTensorPolynomial& fp); UTensorPolynomial(const UTensorPolynomial& tp, const Vector& xval) : TensorPolynomial(tp, xval)@+ {} UTensorPolynomial(int first_row, int num, UTensorPolynomial& tp) : TensorPolynomial(first_row, num, tp)@+ {} }; @ This just gives a name to folded tensor polynomial. @<|FTensorPolynomial| class declaration@>= class FTensorPolynomial : public TensorPolynomial { public:@; FTensorPolynomial(int rows, int vars) : TensorPolynomial(rows, vars)@+ {} FTensorPolynomial(const FTensorPolynomial& fp, int k) : TensorPolynomial(fp, k)@+ {} FTensorPolynomial(const UTensorPolynomial& up); FTensorPolynomial(const FTensorPolynomial& tp, const Vector& xval) : TensorPolynomial(tp, xval)@+ {} FTensorPolynomial(int first_row, int num, FTensorPolynomial& tp) : TensorPolynomial(first_row, num, tp)@+ {} }; @ The compact form of |TensorPolynomial| is in fact a full symmetry tensor, with the number of variables equal to the number of variables of the polynomial plus 1 for $1$. @<|CompactPolynomial| class declaration@>= template @; class CompactPolynomial : public _Ttype { public:@; @<|CompactPolynomial| constructor code@>; @<|CompactPolynomial::eval| method code@>; }; @ This constructor copies matrices from the given tensor polynomial to the appropriate location in this matrix. It creates a dummy tensor |dum| with two variables (one corresponds to $1$, the other to $x$). The index goes through this dummy tensor and the number of columns of the folded/unfolded general symmetry tensor corresponding to the selections of $1$ or $x$ given by the index. Length of $1$ is one, and length of $x$ is |pol.nvars()|. This nvs information is stored in |dumnvs|. The symmetry of this general symmetry dummy tensor |dumgs| is given by a number of ones and x's in the index. We then copy the matrix, if it exists in the polynomial and increase |offset| for the following cycle. @<|CompactPolynomial| constructor code@>= CompactPolynomial(const TensorPolynomial<_Ttype, _TGStype, _Stype>& pol) : _Ttype(pol.nrows(), pol.nvars()+1, pol.getMaxDim()) { _Ttype::zeros(); IntSequence dumnvs(2); dumnvs[0] = 1; dumnvs[1] = pol.nvars(); int offset = 0; _Ttype dum(0, 2, _Ttype::dimen()); for (Tensor::index i = dum.begin(); i != dum.end(); ++i) { int d = i.getCoor().sum(); Symmetry symrun(_Ttype::dimen()-d, d); _TGStype dumgs(0, TensorDimens(symrun, dumnvs)); if (pol.check(Symmetry(d))) { TwoDMatrix subt(*this, offset, dumgs.ncols()); subt.add(1.0, *(pol.get(Symmetry(d)))); } offset += dumgs.ncols(); } } @ We create |x1| to be a concatenation of $1$ and $x$, and then create |PowerProvider| to make a corresponding power |xpow| of |x1|, and finally multiply this matrix with the power. @<|CompactPolynomial::eval| method code@>= void eval(Vector& out, const ConstVector& v) const { TL_RAISE_IF(v.length()+1 != _Ttype::nvar(), "Wrong input vector length in CompactPolynomial::eval"); TL_RAISE_IF(out.length() != _Ttype::nrows(), "Wrong output vector length in CompactPolynomial::eval"); Vector x1(v.length()+1); Vector x1p(x1, 1, v.length()); x1p = v; x1[0] = 1.0; if (_Ttype::dimen() == 0) out = ConstVector(*this, 0); else { PowerProvider pp(x1); const _Stype& xpow = pp.getNext((const _Stype*)NULL); for (int i = 1; i < _Ttype::dimen(); i++) xpow = pp.getNext((const _Stype*)NULL); multVec(0.0, out, 1.0, xpow); } } @ Specialization of the |CompactPolynomial| for unfolded tensor. @<|UCompactPolynomial| class declaration@>= class UCompactPolynomial : public CompactPolynomial { public:@; UCompactPolynomial(const UTensorPolynomial& upol) : CompactPolynomial(upol)@+ {} }; @ Specialization of the |CompactPolynomial| for folded tensor. @<|FCompactPolynomial| class declaration@>= class FCompactPolynomial : public CompactPolynomial { public:@; FCompactPolynomial(const FTensorPolynomial& fpol) : CompactPolynomial(fpol)@+ {} }; @ End of {\tt t\_polynomial.h} file.