@q $Id: stack_container.hweb 745 2006-05-09 13:20:00Z kamenik $ @> @q Copyright 2004, Ondra Kamenik @> @*2 Stack of containers. Start of {\tt stack\_container.h} file. Here we develop abstractions for stacked containers of tensors. For instance, in perturbation methods for SDGE we need function $$z(y,u,u',\sigma)=\left[\matrix{G(y,u,u',\sigma)\cr g(y,u,\sigma)\cr y\cr u}\right]$$ and we need to calculate one step of Faa Di Bruno formula $$\left[B_{s^k}\right]_{\alpha_1\ldots\alpha_l}=\left[f_{z^l}\right]_{\beta_1\ldots\beta_l} \sum_{c\in M_{l,k}}\prod_{m=1}^l\left[z_{s^k(c_m)}\right]^{\beta_m}_{c_m(\alpha)}$$ where we have containers for derivatives of $G$ and $g$. The main purpose of this file is to define abstractions for stack of containers and possibly raw variables, and code |multAndAdd| method calculating (one step of) the Faa Di Bruno formula for folded and unfolded tensors. Note also, that tensors $\left[f_{z^l}\right]$ are sparse. The abstractions are built as follows. At the top, there is an interface describing stack of columns. It contains pure virtual methods needed for manipulating the container stack. For technical reasons it is a template. Both versions (folded, and unfolded) provide all interface necessary for implementation of |multAndAdd|. The second way of inheritance is first general implementation of the interface |StackContainer|, and then specific (|ZContainer| for our specific $z$). The only method which is virtual also after |StackContainer| is |getType|, which is implemented in the specialization and determines behaviour of the stack. The complete classes are obtained by inheriting from the both branches, as it is drawn below: \def\drawpenta#1#2#3#4#5{% \hbox{$ \hgrid=40pt\vgrid=20pt% \sarrowlength=25pt% \gridcommdiag{% &&\hbox{#1}&&\cr &\llap{virtual}\arrow(-1,-1)&&\arrow(1,-1)\rlap{virtual}&\cr \hbox{#2}&&&&\hbox{#3}\cr \arrow(0,-1)&&&&\cr \hbox{#4}&&& {\multiply\sarrowlength by 63\divide\sarrowlength by 50\arrow(-1,-2)}&\cr &\arrow(1,-1)&&&\cr &&\hbox{#5}&&\cr }$}} \centerline{ \drawpenta{|StackContainerInterface|}{|StackContainer|}% {|FoldedStackContainer|}{|ZContainer|}{|FoldedZContainer|} } \centerline{ \drawpenta{|StackContainerInterface|}{|StackContainer|}% {|UnfoldedStackContainer|}{|ZContainer|}{|UnfoldedZContainer|} } We have also two supporting classes |StackProduct| and |KronProdStack| and a number of worker classes used as threads. @s StackContainerInterface int @s StackContainer int @s ZContainer int @s FoldedStackContainer int @s UnfoldedStackContainer int @s FoldedZContainer int @s UnfoldedZContainer int @s WorkerFoldMAADense int @s WorkerFoldMAASparse1 int @s WorkerFoldMAASparse2 int @s WorkerFoldMAASparse4 int @s WorkerUnfoldMAADense int @s WorkerUnfoldMAASparse1 int @s WorkerUnfoldMAASparse2 int @s GContainer int @s FoldedGContainer int @s UnfoldedGContainer int @s StackProduct int @s KronProdStack int @c #ifndef STACK_CONTAINER_H #define STACK_CONTAINER_H #include "int_sequence.h" #include "equivalence.h" #include "tl_static.h" #include "t_container.h" #include "kron_prod.h" #include "permutation.h" #include "sthread.h" @<|StackContainerInterface| class declaration@>; @<|StackContainer| class declaration@>; @<|FoldedStackContainer| class declaration@>; @<|UnfoldedStackContainer| class declaration@>; @<|ZContainer| class declaration@>; @<|FoldedZContainer| class declaration@>; @<|UnfoldedZContainer| class declaration@>; @<|GContainer| class declaration@>; @<|FoldedGContainer| class declaration@>; @<|UnfoldedGContainer| class declaration@>; @<|StackProduct| class declaration@>; @<|KronProdStack| class declaration@>; @<|WorkerFoldMAADense| class declaration@>; @<|WorkerFoldMAASparse1| class declaration@>; @<|WorkerFoldMAASparse2| class declaration@>; @<|WorkerFoldMAASparse4| class declaration@>; @<|WorkerUnfoldMAADense| class declaration@>; @<|WorkerUnfoldMAASparse1| class declaration@>; @<|WorkerUnfoldMAASparse2| class declaration@>; #endif @ Here is the general interface to stack container. The subclasses maintain |IntSequence| of stack sizes, i.e. size of $G$, $g$, $y$, and $u$. Then a convenience |IntSequence| of stack offsets. Then vector of pointers to containers, in our example $G$, and $g$. A non-virtual subclass must implement |getType| which determines dependency of stack items on symmetries. There are three possible types for a symmetry. Either the stack item derivative wrt. the symmetry is a matrix, or a unit matrix, or zero. Method |isZero| returns true if the derivative of a given stack item wrt. to given symmetry is zero as defined by |getType| or the derivative is not present in the container. In this way, we can implement the formula conditional some of the tensors are zero, which is not true (they are only missing). Method |createPackedColumn| returns a vector of stack derivatives with respect to the given symmetry and of the given column, where all zeros from zero types, or unit matrices are deleted. See {\tt kron\_prod2.hweb} for explanation. @<|StackContainerInterface| class declaration@>= template @; class StackContainerInterface { public:@; typedef TensorContainer<_Ttype> _Ctype; typedef enum {@+ matrix, unit, zero@+} itype; protected:@; const EquivalenceBundle& ebundle; public:@; StackContainerInterface() : ebundle(*(tls.ebundle))@+ {} virtual ~StackContainerInterface()@+ {} virtual const IntSequence& getStackSizes() const =0; virtual IntSequence& getStackSizes() =0; virtual const IntSequence& getStackOffsets() const =0; virtual IntSequence& getStackOffsets() =0; virtual int numConts() const =0; virtual const _Ctype* getCont(int i) const =0; virtual itype getType(int i, const Symmetry& s) const =0; virtual int numStacks() const =0; virtual bool isZero(int i, const Symmetry& s) const =0; virtual const _Ttype* getMatrix(int i, const Symmetry& s) const =0; virtual int getLengthOfMatrixStacks(const Symmetry& s) const =0; virtual int getUnitPos(const Symmetry& s) const =0; virtual Vector* createPackedColumn(const Symmetry& s, const IntSequence& coor, int& iu) const =0; int getAllSize() const {@+ return getStackOffsets()[numStacks()-1] + getStackSizes()[numStacks()-1];@+} }; @ Here is |StackContainer|, which implements almost all interface |StackContainerInterface| but one method |getType| which is left for implementation to specializations. @<|StackContainer| class declaration@>= template @; class StackContainer : virtual public StackContainerInterface<_Ttype> { public:@; typedef StackContainerInterface<_Ttype> _Stype; typedef typename StackContainerInterface<_Ttype>::_Ctype _Ctype; typedef typename StackContainerInterface<_Ttype>::itype itype; protected:@; int num_conts; IntSequence stack_sizes; IntSequence stack_offsets; const _Ctype** const conts; public:@; StackContainer(int ns, int nc) : num_conts(nc), stack_sizes(ns, 0), stack_offsets(ns, 0), conts(new const _Ctype*[nc])@+ {} virtual ~StackContainer() @+{delete [] conts;} const IntSequence& getStackSizes() const {@+ return stack_sizes;@+} IntSequence& getStackSizes() {@+ return stack_sizes;@+} const IntSequence& getStackOffsets() const {@+ return stack_offsets;@+} IntSequence& getStackOffsets() {@+ return stack_offsets;@+} int numConts() const {@+ return num_conts;} const _Ctype* getCont(int i) const {@+ return conts[i];@+} virtual itype getType(int i, const Symmetry& s) const =0; int numStacks() const {@+ return stack_sizes.size();@+} @<|StackContainer::isZero| code@>; @<|StackContainer::getMatrix| code@>; @<|StackContainer::getLengthOfMatrixStacks| code@>; @<|StackContainer::getUnitPos| code@>; @<|StackContainer::createPackedColumn| code@>; protected:@; @<|StackContainer::calculateOffsets| code@>; }; @ @<|StackContainer::isZero| code@>= bool isZero(int i, const Symmetry& s) const { TL_RAISE_IF(i < 0 || i >= numStacks(), "Wrong index to stack in StackContainer::isZero."); return (getType(i, s) == _Stype::zero || (getType(i, s) == _Stype::matrix && !conts[i]->check(s))); } @ @<|StackContainer::getMatrix| code@>= const _Ttype* getMatrix(int i, const Symmetry& s) const { TL_RAISE_IF(isZero(i, s) || getType(i, s) == _Stype::unit, "Matrix is not returned in StackContainer::getMatrix"); return conts[i]->get(s); } @ @<|StackContainer::getLengthOfMatrixStacks| code@>= int getLengthOfMatrixStacks(const Symmetry& s) const { int res = 0; int i = 0; while (i < numStacks() && getType(i, s) == _Stype::matrix) res += stack_sizes[i++]; return res; } @ @<|StackContainer::getUnitPos| code@>= int getUnitPos(const Symmetry& s) const { if (s.dimen() != 1) return -1; int i = numStacks()-1; while (i >= 0 && getType(i, s) != _Stype::unit) i--; return i; } @ @<|StackContainer::createPackedColumn| code@>= Vector* createPackedColumn(const Symmetry& s, const IntSequence& coor, int& iu) const { TL_RAISE_IF(s.dimen() != coor.size(), "Incompatible coordinates for symmetry in StackContainer::createPackedColumn"); int len = getLengthOfMatrixStacks(s); iu = -1; int i = 0; if (-1 != (i = getUnitPos(s))) { iu = stack_offsets[i] + coor[0]; len++; } Vector* res = new Vector(len); i = 0; while (i < numStacks() && getType(i, s) == _Stype::matrix) { const _Ttype* t = getMatrix(i, s); Tensor::index ind(t, coor); Vector subres(*res, stack_offsets[i], stack_sizes[i]); subres = ConstVector(ConstGeneralMatrix(*t), *ind); i++; } if (iu != -1) (*res)[len-1] = 1; return res; } @ @<|StackContainer::calculateOffsets| code@>= void calculateOffsets() { stack_offsets[0] = 0; for (int i = 1; i < stack_offsets.size(); i++) stack_offsets[i] = stack_offsets[i-1] + stack_sizes[i-1]; } @ @<|FoldedStackContainer| class declaration@>= class WorkerFoldMAADense; class WorkerFoldMAASparse1; class WorkerFoldMAASparse2; class WorkerFoldMAASparse4; class FoldedStackContainer : virtual public StackContainerInterface { friend class WorkerFoldMAADense; friend class WorkerFoldMAASparse1; friend class WorkerFoldMAASparse2; friend class WorkerFoldMAASparse4; public:@; static double fill_threshold; void multAndAdd(int dim, const TensorContainer& c , FGSTensor& out) const {@+ if (c.check(Symmetry(dim))) multAndAdd(*(c.get(Symmetry(dim))), out);@+} void multAndAdd(const FSSparseTensor& t, FGSTensor& out) const; void multAndAdd(int dim, const FGSContainer& c, FGSTensor& out) const; protected:@; void multAndAddSparse1(const FSSparseTensor& t, FGSTensor& out) const; void multAndAddSparse2(const FSSparseTensor& t, FGSTensor& out) const; void multAndAddSparse3(const FSSparseTensor& t, FGSTensor& out) const; void multAndAddSparse4(const FSSparseTensor& t, FGSTensor& out) const; void multAndAddStacks(const IntSequence& fi, const FGSTensor& g, FGSTensor& out, const void* ad) const; void multAndAddStacks(const IntSequence& fi, const GSSparseTensor& g, FGSTensor& out, const void* ad) const; }; @ @<|UnfoldedStackContainer| class declaration@>= class WorkerUnfoldMAADense; class WorkerUnfoldMAASparse1; class WorkerUnfoldMAASparse2; class UnfoldedStackContainer : virtual public StackContainerInterface { friend class WorkerUnfoldMAADense; friend class WorkerUnfoldMAASparse1; friend class WorkerUnfoldMAASparse2; public:@; static double fill_threshold; void multAndAdd(int dim, const TensorContainer& c , UGSTensor& out) const {@+ if (c.check(Symmetry(dim))) multAndAdd(*(c.get(Symmetry(dim))), out);@+} void multAndAdd(const FSSparseTensor& t, UGSTensor& out) const; void multAndAdd(int dim, const UGSContainer& c, UGSTensor& out) const; protected:@; void multAndAddSparse1(const FSSparseTensor& t, UGSTensor& out) const; void multAndAddSparse2(const FSSparseTensor& t, UGSTensor& out) const; void multAndAddStacks(const IntSequence& fi, const UGSTensor& g, UGSTensor& out, const void* ad) const; }; @ Here is the specialization of the |StackContainer|. We implement here the $z$ needed in SDGE context. We implement |getType| and define a constructor feeding the data and sizes. Note that it has two containers, the first is dependent on four variables $G(y^*,u,u',\sigma)$, and the second dependent on three variables $g(y^*,u,\sigma)$. So that we would be able to stack them, we make the second container $g$ be dependent on four variables, the third being $u'$ a dummy and always returning zero if dimension of $u'$ is positive. @<|ZContainer| class declaration@>= template @; class ZContainer : public StackContainer<_Ttype> { public:@; typedef StackContainer<_Ttype> _Tparent; typedef StackContainerInterface<_Ttype> _Stype; typedef typename _Tparent::_Ctype _Ctype; typedef typename _Tparent::itype itype; ZContainer(const _Ctype* gss, int ngss, const _Ctype* g, int ng, int ny, int nu) : _Tparent(4, 2) { _Tparent::stack_sizes[0] = ngss; _Tparent::stack_sizes[1] = ng; _Tparent::stack_sizes[2] = ny; _Tparent::stack_sizes[3] = nu; _Tparent::conts[0] = gss; _Tparent::conts[1] = g; _Tparent::calculateOffsets(); } @<|ZContainer::getType| code@>; }; @ Here we say, what happens if we derive $z$. recall the top of the file, how $z$ looks, and code is clear. @<|ZContainer::getType| code@>= itype getType(int i, const Symmetry& s) const { if (i == 0) return _Stype::matrix; if (i == 1) if (s[2] > 0) return _Stype::zero; else return _Stype::matrix; if (i == 2) if (s == Symmetry(1,0,0,0)) return _Stype::unit; else return _Stype::zero; if (i == 3) if (s == Symmetry(0,1,0,0)) return _Stype::unit; else return _Stype::zero; TL_RAISE("Wrong stack index in ZContainer::getType"); return _Stype::zero; } @ @<|FoldedZContainer| class declaration@>= class FoldedZContainer : public ZContainer, public FoldedStackContainer { public:@; typedef TensorContainer _Ctype; FoldedZContainer(const _Ctype* gss, int ngss, const _Ctype* g, int ng, int ny, int nu) : ZContainer(gss, ngss, g, ng, ny, nu)@+ {} }; @ @<|UnfoldedZContainer| class declaration@>= class UnfoldedZContainer : public ZContainer, public UnfoldedStackContainer { public:@; typedef TensorContainer _Ctype; UnfoldedZContainer(const _Ctype* gss, int ngss, const _Ctype* g, int ng, int ny, int nu) : ZContainer(gss, ngss, g, ng, ny, nu)@+ {} }; @ Here we have another specialization of container used in context of SDGE. We define a container for $$G(y,u,u',\sigma)=g^{**}(g^*(y,u,\sigma),u',\sigma)$$ For some reason, the symmetry of $g^{**}$ has length $4$ although it is really dependent on three variables. (To now the reason, consult |@<|ZContainer| class declaration@>|.) So, it has four stack, the third one is dummy, and always returns zero. The first stack corresponds to a container of $g^*$. @<|GContainer| class declaration@>= template @; class GContainer : public StackContainer<_Ttype> { public:@; typedef StackContainer<_Ttype> _Tparent; typedef StackContainerInterface<_Ttype> _Stype; typedef typename StackContainer<_Ttype>::_Ctype _Ctype; typedef typename StackContainer<_Ttype>::itype itype; GContainer(const _Ctype* gs, int ngs, int nu) : StackContainer<_Ttype>(4, 1) { _Tparent::stack_sizes[0] = ngs; _Tparent::stack_sizes[1] = nu; _Tparent::stack_sizes[2] = nu; _Tparent::stack_sizes[3] = 1; _Tparent::conts[0] = gs; _Tparent::calculateOffsets(); } @<|GContainer::getType| code@>; }; @ Here we define the dependencies in $g^{**}(g^*(y,u,\sigma),u',\sigma)$. Also note, that first derivative of $g^*$ wrt $\sigma$ is always zero, so we also add this information. @<|GContainer::getType| code@>= itype getType(int i, const Symmetry& s) const { if (i == 0) if (s[2] > 0 || s == Symmetry(0,0,0,1)) return _Stype::zero; else return _Stype::matrix; if (i == 1) if (s == Symmetry(0,0,1,0)) return _Stype::unit; else return _Stype::zero; if (i == 2) return _Stype::zero; if (i == 3) if (s == Symmetry(0,0,0,1)) return _Stype::unit; else return _Stype::zero; TL_RAISE("Wrong stack index in GContainer::getType"); return _Stype::zero; } @ @<|FoldedGContainer| class declaration@>= class FoldedGContainer : public GContainer, public FoldedStackContainer { public:@; typedef TensorContainer _Ctype; FoldedGContainer(const _Ctype* gs, int ngs, int nu) : GContainer(gs, ngs, nu)@+ {} }; @ @<|UnfoldedGContainer| class declaration@>= class UnfoldedGContainer : public GContainer, public UnfoldedStackContainer { public:@; typedef TensorContainer _Ctype; UnfoldedGContainer(const _Ctype* gs, int ngs, int nu) : GContainer(gs, ngs, nu)@+ {} }; @ Here we have a support class for product of |StackContainer|s. It only adds a dimension to |StackContainer|. It selects the symmetries according to equivalence classes passed to the constructor. The equivalence can have permuted classes by some given permutation. Nothing else is interesting. @<|StackProduct| class declaration@>= template @; class StackProduct { public:@; typedef StackContainerInterface<_Ttype> _Stype; typedef typename _Stype::_Ctype _Ctype; typedef typename _Stype::itype itype; protected:@; const _Stype& stack_cont; InducedSymmetries syms; Permutation per; public:@; StackProduct(const _Stype& sc, const Equivalence& e, const Symmetry& os) : stack_cont(sc), syms(e, os), per(e)@+ {} StackProduct(const _Stype& sc, const Equivalence& e, const Permutation& p, const Symmetry& os) : stack_cont(sc), syms(e, p, os), per(e, p)@+ {} int dimen() const {@+ return syms.size();@+} int getAllSize() const {@+ return stack_cont.getAllSize();@+} const Symmetry& getProdSym(int ip) const {@+ return syms[ip];@+} @<|StackProduct::isZero| code@>; @<|StackProduct::getType| code@>; @<|StackProduct::getMatrix| code@>; @<|StackProduct::createPackedColumns| code@>; @<|StackProduct::getSize| code@>; @<|StackProduct::numMatrices| code@>; }; @ @<|StackProduct::isZero| code@>= bool isZero(const IntSequence& istacks) const { TL_RAISE_IF(istacks.size() != dimen(), "Wrong istacks coordinates for StackProduct::isZero"); bool res = false; int i = 0; while (i < dimen() && !(res = stack_cont.isZero(istacks[i], syms[i]))) i++; return res; } @ @<|StackProduct::getType| code@>= itype getType(int is, int ip) const { TL_RAISE_IF(is < 0 || is >= stack_cont.numStacks(), "Wrong index to stack in StackProduct::getType"); TL_RAISE_IF(ip < 0 || ip >= dimen(), "Wrong index to stack container in StackProduct::getType"); return stack_cont.getType(is, syms[ip]); } @ @<|StackProduct::getMatrix| code@>= const _Ttype* getMatrix(int is, int ip) const { return stack_cont.getMatrix(is, syms[ip]); } @ @<|StackProduct::createPackedColumns| code@>= void createPackedColumns(const IntSequence& coor, Vector** vs, IntSequence& iu) const { TL_RAISE_IF(iu.size() != dimen(), "Wrong storage length for unit flags in StackProduct::createPackedColumn"); TL_RAISE_IF(coor.size() != per.size(), "Wrong size of index coor in StackProduct::createPackedColumn"); IntSequence perindex(coor.size()); per.apply(coor, perindex); int off = 0; for (int i = 0; i < dimen(); i++) { IntSequence percoor(perindex, off, syms[i].dimen() + off); vs[i] = stack_cont.createPackedColumn(syms[i], percoor, iu[i]); off += syms[i].dimen(); } } @ @<|StackProduct::getSize| code@>= int getSize(int is) const { return stack_cont.getStackSizes()[is]; } @ @<|StackProduct::numMatrices| code@>= int numMatrices(const IntSequence& istacks) const { TL_RAISE_IF(istacks.size() != dimen(), "Wrong size of stack coordinates in StackContainer::numMatrices"); int ret = 0; int ip = 0; while (ip < dimen() && getType(istacks[ip], ip) == _Stype::matrix) { ret++; ip++; } return ret; } @ Here we only inherit from Kronecker product |KronProdAllOptim|, only to allow for a constructor constructing from |StackProduct|. @<|KronProdStack| class declaration@>= template class KronProdStack : public KronProdAllOptim { public:@; typedef StackProduct<_Ttype> _Ptype; typedef StackContainerInterface<_Ttype> _Stype; @<|KronProdStack| constructor code@>; }; @ Here we construct |KronProdAllOptim| from |StackContainer| and given selections of stack items from stack containers in the product. We only decide whether to insert matrix, or unit matrix. At this point, we do not call |KronProdAllOptim::optimizeOrder|, so the |KronProdStack| behaves like |KronProdAll| (i.e. no optimization is done). @<|KronProdStack| constructor code@>= KronProdStack(const _Ptype& sp, const IntSequence& istack) : KronProdAllOptim(sp.dimen()) { TL_RAISE_IF(sp.dimen() != istack.size(), "Wrong stack product dimension for KronProdStack constructor"); for (int i = 0; i < sp.dimen(); i++) { TL_RAISE_IF(sp.getType(istack[i], i) == _Stype::zero, "Attempt to construct KronProdStack from zero matrix"); if (sp.getType(istack[i], i) == _Stype::unit) setUnit(i, sp.getSize(istack[i])); if (sp.getType(istack[i], i) == _Stype::matrix) { const TwoDMatrix* m = sp.getMatrix(istack[i], i); TL_RAISE_IF(m->nrows() != sp.getSize(istack[i]), "Wrong size of returned matrix in KronProdStack constructor"); setMat(i, *m); } } } @ @<|WorkerFoldMAADense| class declaration@>= class WorkerFoldMAADense : public THREAD { const FoldedStackContainer& cont; Symmetry sym; const FGSContainer& dense_cont; FGSTensor& out; public:@; WorkerFoldMAADense(const FoldedStackContainer& container, const Symmetry& s, const FGSContainer& dcontainer, FGSTensor& outten); void operator()(); }; @ @<|WorkerFoldMAASparse1| class declaration@>= class WorkerFoldMAASparse1 : public THREAD { const FoldedStackContainer& cont; const FSSparseTensor& t; FGSTensor& out; IntSequence coor; const EquivalenceBundle& ebundle; public:@; WorkerFoldMAASparse1(const FoldedStackContainer& container, const FSSparseTensor& ten, FGSTensor& outten, const IntSequence& c); void operator()(); }; @ @<|WorkerFoldMAASparse2| class declaration@>= class WorkerFoldMAASparse2 : public THREAD { const FoldedStackContainer& cont; const FSSparseTensor& t; FGSTensor& out; IntSequence coor; public:@; WorkerFoldMAASparse2(const FoldedStackContainer& container, const FSSparseTensor& ten, FGSTensor& outten, const IntSequence& c); void operator()(); }; @ @<|WorkerFoldMAASparse4| class declaration@>= class WorkerFoldMAASparse4 : public THREAD { const FoldedStackContainer& cont; const FSSparseTensor& t; FGSTensor& out; IntSequence coor; public:@; WorkerFoldMAASparse4(const FoldedStackContainer& container, const FSSparseTensor& ten, FGSTensor& outten, const IntSequence& c); void operator()(); }; @ @<|WorkerUnfoldMAADense| class declaration@>= class WorkerUnfoldMAADense : public THREAD { const UnfoldedStackContainer& cont; Symmetry sym; const UGSContainer& dense_cont; UGSTensor& out; public:@; WorkerUnfoldMAADense(const UnfoldedStackContainer& container, const Symmetry& s, const UGSContainer& dcontainer, UGSTensor& outten); void operator()(); }; @ @<|WorkerUnfoldMAASparse1| class declaration@>= class WorkerUnfoldMAASparse1 : public THREAD { const UnfoldedStackContainer& cont; const FSSparseTensor& t; UGSTensor& out; IntSequence coor; const EquivalenceBundle& ebundle; public:@; WorkerUnfoldMAASparse1(const UnfoldedStackContainer& container, const FSSparseTensor& ten, UGSTensor& outten, const IntSequence& c); void operator()(); }; @ @<|WorkerUnfoldMAASparse2| class declaration@>= class WorkerUnfoldMAASparse2 : public THREAD { const UnfoldedStackContainer& cont; const FSSparseTensor& t; UGSTensor& out; IntSequence coor; public:@; WorkerUnfoldMAASparse2(const UnfoldedStackContainer& container, const FSSparseTensor& ten, UGSTensor& outten, const IntSequence& c); void operator()(); }; @ End of {\tt stack\_container.h} file.