@q $Id: permutation.hweb 148 2005-04-19 15:12:26Z kamenik $ @> @q Copyright 2004, Ondra Kamenik @> @*2 Permutations. Start of {\tt permutation.h} file. The permutation class is useful when describing a permutation of indices in permuted symmetry tensor. This tensor comes to existence, for instance, as a result of the following tensor multiplication: $$\left[g_{y^3}\right]_{\gamma_1\gamma_2\gamma_3} \left[g_{yu}\right]^{\gamma_1}_{\alpha_1\beta_3} \left[g_{yu}\right]^{\gamma_2}_{\alpha_2\beta_1} \left[g_u\right]^{\gamma_3}_{\beta_2} $$ If this operation is done by a Kronecker product of unfolded tensors, the resulting tensor has permuted indices. So, in this case the permutation is implied by the equivalence: $\{\{0,4\},\{1,3\},\{2\}\}$. This results in a permutation which maps indices $(0,1,2,3,4)\mapsto(0,2,4,3,1)$. The other application of |Permutation| class is to permute indices with the same permutation as done during sorting. Here we only define an abstraction for the permutation defined by an equivalence. Its basic operation is to apply the permutation to the integer sequence. The application is right (or inner), in sense that it works on indices of the sequence not items of the sequence. More formally $s\circ m \not=m\circ s$. In here, the application of the permutation defined by map $m$ is $s\circ m$. Also, we need |PermutationSet| class which contains all permutations of $n$ element set, and a bundle of permutations |PermutationBundle| which contains all permutation sets up to a given number. @s Permutation int @s PermutationSet int @s PermutationBundle int @c #ifndef PERMUTATION_H #define PERMUTATION_H #include "int_sequence.h" #include "equivalence.h" #include @<|Permutation| class declaration@>; @<|PermutationSet| class declaration@>; @<|PermutationBundle| class declaration@>; #endif @ The permutation object will have a map, which defines mapping of indices $(0,1,\ldots,n-1)\mapsto(m_0,m_1,\ldots, m_{n-1})$. The map is the sequence $(m_0,m_1,\ldots, m_{n-1}$. When the permutation with the map $m$ is applied on sequence $s$, it permutes its indices: $s\circ\hbox{id}\mapsto s\circ m$. So we have one constructor from equivalence, then a method |apply|, and finally a method |tailIdentity| which returns a number of trailing indices which yield identity. Also we have a constructor calculating map, which corresponds to permutation in sort. This is, we want $(\hbox{sorted }s)\circ m = s$. @<|Permutation| class declaration@>= class Permutation { protected:@; IntSequence permap; public:@; Permutation(int len) : permap(len) {@+ for (int i = 0; i < len; i++) permap[i] = i;@+} Permutation(const Equivalence& e) : permap(e.getN()) {@+ e.trace(permap);@+} Permutation(const Equivalence& e, const Permutation& per) : permap(e.getN()) {@+ e.trace(permap, per);@+} Permutation(const IntSequence& s) : permap(s.size()) {@+ computeSortingMap(s);@+}; Permutation(const Permutation& p) : permap(p.permap)@+ {} Permutation(const Permutation& p1, const Permutation& p2) : permap(p2.permap) {@+ p1.apply(permap);@+} Permutation(const Permutation& p, int i) : permap(p.size(), p.permap, i)@+ {} const Permutation& operator=(const Permutation& p) {@+ permap = p.permap;@+ return *this;@+} bool operator==(const Permutation& p) {@+ return permap == p.permap;@+} int size() const {@+ return permap.size();@+} void print() const {@+ permap.print();@+} void apply(const IntSequence& src, IntSequence& tar) const; void apply(IntSequence& tar) const; void inverse(); int tailIdentity() const; const IntSequence& getMap() const {@+ return permap;@+} IntSequence& getMap() {@+ return permap;@+} protected:@; void computeSortingMap(const IntSequence& s); }; @ The |PermutationSet| maintains an array of of all permutations. The default constructor constructs one element permutation set of one element sets. The second constructor constructs a new permutation set over $n$ from all permutations over $n-1$. The parameter $n$ need not to be provided, but it serves to distinguish the constructor from copy constructor, which is not provided. The method |getPreserving| returns a factor subgroup of permutations, which are invariants with respect to the given sequence. This are all permutations $p$ yielding $p\circ s = s$, where $s$ is the given sequence. @<|PermutationSet| class declaration@>= class PermutationSet { int order; int size; const Permutation** const pers; public:@; PermutationSet(); PermutationSet(const PermutationSet& ps, int n); ~PermutationSet(); int getNum() const {@+ return size;@+} const Permutation& get(int i) const {@+ return *(pers[i]);@+} vector getPreserving(const IntSequence& s) const; }; @ The permutation bundle encapsulates all permutations sets up to some given dimension. @<|PermutationBundle| class declaration@>= class PermutationBundle { vector bundle; public:@; PermutationBundle(int nmax); ~PermutationBundle(); const PermutationSet& get(int n) const; void generateUpTo(int nmax); }; @ End of {\tt permutation.h} file.