@q $Id: fs_tensor.cweb 280 2005-06-13 09:40:02Z kamenik $ @> @q Copyright 2004, Ondra Kamenik @> @ Start of {\tt fs\_tensor.cpp} file. @c #include "fs_tensor.h" #include "gs_tensor.h" #include "sparse_tensor.h" #include "rfs_tensor.h" #include "tl_exception.h" @<|FFSTensor| contraction constructor@>; @<|FFSTensor::calcMaxOffset| code@>; @<|FFSTensor| conversion from sparse@>; @<|FFSTensor| conversion from unfolded@>; @<|FFSTensor::unfold| code@>; @<|FFSTensor::increment| code@>; @<|FFSTensor::decrement| code@>; @<|FFSTensor::getOffset| code@>; @<|FFSTensor::addSubTensor| code@>; @<|UFSTensor| contraction constructor@>; @<|UFSTensor| conversion from folded@>; @<|UFSTensor::fold| code@>; @<|UFSTensor| increment and decrement@>; @<|UFSTensor::getOffset| code@>; @<|UFSTensor::addSubTensor| code@>; @<|UFSTensor::unfoldData| code@>; @ This constructs a fully symmetric tensor as given by the contraction: $$\left[g_{y^n}\right]_{\alpha_1\ldots\alpha_n}= \left[t_{y^{n+1}}\right]_{\alpha_1\ldots\alpha_n\beta}[x]^\beta$$ We go through all columns of output tensor $[g]$ and for each column we cycle through all variables, insert a variable to the column coordinates obtaining a column of tensor $[t]$. the column is multiplied by an appropriate item of |x| and added to the column of $[g]$ tensor. @<|FFSTensor| contraction constructor@>= FFSTensor::FFSTensor(const FFSTensor& t, const ConstVector& x) : FTensor(along_col, IntSequence(t.dimen()-1, t.nvar()), t.nrows(), calcMaxOffset(t.nvar(), t.dimen()-1), t.dimen()-1), nv(t.nvar()) { TL_RAISE_IF(t.dimen() < 1, "Wrong dimension for tensor contraction of FFSTensor"); TL_RAISE_IF(t.nvar() != x.length(), "Wrong number of variables for tensor contraction of FFSTensor"); zeros(); for (Tensor::index to = begin(); to != end(); ++to) { for (int i = 0; i < nvar(); i++) { IntSequence from_ind(i, to.getCoor()); Tensor::index from(&t, from_ind); addColumn(x[i], t, *from, *to); } } } @ This returns number of indices for folded tensor with full symmetry. Let $n$ be a number of variables |nvar| and $d$ the dimension |dim|. Then the number of indices is $\pmatrix{n+d-1\cr d}$. @<|FFSTensor::calcMaxOffset| code@>= int FFSTensor::calcMaxOffset(int nvar, int d) { if (nvar == 0 && d == 0) return 1; if (nvar == 0 && d > 0) return 0; return noverk(nvar + d - 1, d); } @ The conversion from sparse tensor is clear. We go through all the tensor and write to the dense what is found. @<|FFSTensor| conversion from sparse@>= FFSTensor::FFSTensor(const FSSparseTensor& t) : FTensor(along_col, IntSequence(t.dimen(), t.nvar()), t.nrows(), calcMaxOffset(t.nvar(), t.dimen()), t.dimen()), nv(t.nvar()) { zeros(); for (FSSparseTensor::const_iterator it = t.getMap().begin(); it != t.getMap().end(); ++it) { index ind(this, (*it).first); get((*it).second.first, *ind) = (*it).second.second; } } @ The conversion from unfolded copies only columns of respective coordinates. So we go through all the columns in the folded tensor (this), make an index of the unfolded vector from coordinates, and copy the column. @<|FFSTensor| conversion from unfolded@>= FFSTensor::FFSTensor(const UFSTensor& ut) : FTensor(along_col, IntSequence(ut.dimen(), ut.nvar()), ut.nrows(), calcMaxOffset(ut.nvar(), ut.dimen()), ut.dimen()), nv(ut.nvar()) { for (index in = begin(); in != end(); ++in) { index src(&ut, in.getCoor()); copyColumn(ut, *src, *in); } } @ Here just make a new instance and return the reference. @<|FFSTensor::unfold| code@>= UTensor& FFSTensor::unfold() const { return *(new UFSTensor(*this)); } @ Incrementing is easy. We have to increment by calling static method |UTensor::increment| first. In this way, we have coordinates of unfolded tensor. Then we have to skip to the closest folded index which corresponds to monotonizeing the integer sequence. @<|FFSTensor::increment| code@>= void FFSTensor::increment(IntSequence& v) const { TL_RAISE_IF(v.size() != dimen(), "Wrong input/output vector size in FFSTensor::increment"); UTensor::increment(v, nv); v.monotone(); } @ Decrement calls static |FTensor::decrement|. @<|FFSTensor::decrement| code@>= void FFSTensor::decrement(IntSequence& v) const { TL_RAISE_IF(v.size() != dimen(), "Wrong input/output vector size in FFSTensor::decrement"); FTensor::decrement(v, nv); } @ @<|FFSTensor::getOffset| code@>= int FFSTensor::getOffset(const IntSequence& v) const { TL_RAISE_IF(v.size() != dimen(), "Wrong input vector size in FFSTensor::getOffset"); return FTensor::getOffset(v, nv); } @ Here we add a general symmetry tensor to the (part of) full symmetry tensor provided that the unique variable of the full symmetry tensor is a stack of variables from the general symmetry tensor. We check for the dimensions and number of variables. Then we calculate a shift of coordinates when going from the general symmetry tensor to full symmetry (it corresponds to shift of coordinates induces by stacking the variables). Then we add the appropriate columns by going through the columns in general symmetry, adding the shift and sorting. @<|FFSTensor::addSubTensor| code@>= void FFSTensor::addSubTensor(const FGSTensor& t) { TL_RAISE_IF(dimen() != t.getDims().dimen(), "Wrong dimensions for FFSTensor::addSubTensor"); TL_RAISE_IF(nvar() != t.getDims().getNVS().sum(), "Wrong nvs for FFSTensor::addSubTensor"); @; for (Tensor::index ind = t.begin(); ind != t.end(); ++ind) { IntSequence c(ind.getCoor()); c.add(1, shift); c.sort(); Tensor::index tar(this, c); addColumn(t, *ind, *tar); } } @ @= IntSequence shift_pre(t.getSym().num(), 0); for (int i = 1; i < t.getSym().num(); i++) shift_pre[i] = shift_pre[i-1]+t.getDims().getNVS()[i-1]; IntSequence shift(t.getSym(), shift_pre); @ This is a bit more straightforward than |@<|FFSTensor| contraction constructor@>|. We do not add column by column but we do it by submatrices due to regularity of the unfolded tensor. @<|UFSTensor| contraction constructor@>= UFSTensor::UFSTensor(const UFSTensor& t, const ConstVector& x) : UTensor(along_col, IntSequence(t.dimen()-1, t.nvar()), t.nrows(), calcMaxOffset(t.nvar(), t.dimen()-1), t.dimen()-1), nv(t.nvar()) { TL_RAISE_IF(t.dimen() < 1, "Wrong dimension for tensor contraction of UFSTensor"); TL_RAISE_IF(t.nvar() != x.length(), "Wrong number of variables for tensor contraction of UFSTensor"); zeros(); for (int i = 0; i < ncols(); i++) { ConstTwoDMatrix tpart(t, i*nvar(), nvar()); Vector outcol(*this, i); tpart.multaVec(outcol, x); } } @ Here we convert folded full symmetry tensor to unfolded. We copy all columns of folded tensor, and then call |unfoldData()|. @<|UFSTensor| conversion from folded@>= UFSTensor::UFSTensor(const FFSTensor& ft) : UTensor(along_col, IntSequence(ft.dimen(), ft.nvar()), ft.nrows(), calcMaxOffset(ft.nvar(), ft.dimen()), ft.dimen()), nv(ft.nvar()) { for (index src = ft.begin(); src != ft.end(); ++src) { index in(this, src.getCoor()); copyColumn(ft, *src, *in); } unfoldData(); } @ Here we just return a reference to new instance of folded tensor. @<|UFSTensor::fold| code@>= FTensor& UFSTensor::fold() const { return *(new FFSTensor(*this)); } @ Here we just call |UTensor| respective static methods. @<|UFSTensor| increment and decrement@>= void UFSTensor::increment(IntSequence& v) const { TL_RAISE_IF(v.size() != dimen(), "Wrong input/output vector size in UFSTensor::increment"); UTensor::increment(v, nv); } void UFSTensor::decrement(IntSequence& v) const { TL_RAISE_IF(v.size() != dimen(), "Wrong input/output vector size in UFSTensor::decrement"); UTensor::decrement(v, nv); } @ @<|UFSTensor::getOffset| code@>= int UFSTensor::getOffset(const IntSequence& v) const { TL_RAISE_IF(v.size() != dimen(), "Wrong input vector size in UFSTensor::getOffset"); return UTensor::getOffset(v, nv); } @ This is very similar to |@<|FFSTensor::addSubTensor| code@>|. The only difference is the addition. We go through all columns in the full symmetry tensor and cancel the shift. If the coordinates after the cancellation are positive, we find the column in the general symmetry tensor, and add it. @<|UFSTensor::addSubTensor| code@>= void UFSTensor::addSubTensor(const UGSTensor& t) { TL_RAISE_IF(dimen() != t.getDims().dimen(), "Wrong dimensions for UFSTensor::addSubTensor"); TL_RAISE_IF(nvar() != t.getDims().getNVS().sum(), "Wrong nvs for UFSTensor::addSubTensor"); @; for (Tensor::index tar = begin(); tar != end(); ++tar) { IntSequence c(tar.getCoor()); c.sort(); c.add(-1, shift); if (c.isPositive() && c.less(t.getDims().getNVX())) { Tensor::index from(&t, c); addColumn(t, *from, *tar); } } } @ Here we go through all columns, find a column of folded index, and then copy the column data. Finding the index is done by sorting the integer sequence. @<|UFSTensor::unfoldData| code@>= void UFSTensor::unfoldData() { for (index in = begin(); in != end(); ++in) { IntSequence v(in.getCoor()); v.sort(); index tmp(this, v); copyColumn(*tmp, *in); } } @ End of {\tt fs\_tensor.cpp} file.