/* $Header: /var/lib/cvs/dynare_cpp/sylv/cc/GeneralMatrix.cpp,v 1.4 2004/11/24 20:41:59 kamenik Exp $ */ /* Tag $Name: $ */ #include "SylvException.h" #include "GeneralMatrix.h" #include #include #include #include #include #include #include int GeneralMatrix::md_length = 32; GeneralMatrix::GeneralMatrix(const GeneralMatrix& m) : data(m.rows*m.cols), rows(m.rows), cols(m.cols), ld(m.rows) { copy(m); } GeneralMatrix::GeneralMatrix(const ConstGeneralMatrix& m) : data(m.rows*m.cols), rows(m.rows), cols(m.cols), ld(m.rows) { copy(m); } GeneralMatrix::GeneralMatrix(const GeneralMatrix& m, const char* dummy) : data(m.rows*m.cols), rows(m.cols), cols(m.rows), ld(m.cols) { for (int i = 0; i < m.rows; i++) for (int j = 0; j < m.cols; j++) get(j,i) = m.get(i,j); } GeneralMatrix::GeneralMatrix(const ConstGeneralMatrix& m, const char* dummy) : data(m.rows*m.cols), rows(m.cols), cols(m.rows), ld(m.cols) { for (int i = 0; i < m.rows; i++) for (int j = 0; j < m.cols; j++) get(j,i) = m.get(i,j); } GeneralMatrix::GeneralMatrix(const GeneralMatrix& m, int i, int j, int nrows, int ncols) : data(nrows*ncols), rows(nrows), cols(ncols), ld(nrows) { copy(m, i, j); } GeneralMatrix::GeneralMatrix(GeneralMatrix& m, int i, int j, int nrows, int ncols) : data(m.base()+m.ld*j+i, m.ld*(ncols-1)+nrows), rows(nrows), cols(ncols), ld(m.ld) {} GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const GeneralMatrix& b) : data(a.rows*b.cols), rows(a.rows), cols(b.cols), ld(a.rows) { gemm("N", a, "N", b, 1.0, 0.0); } GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const GeneralMatrix& b, const char* dum) : data(a.rows*b.rows), rows(a.rows), cols(b.rows), ld(a.rows) { gemm("N", a, "T", b, 1.0, 0.0); } GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const char* dum, const GeneralMatrix& b) : data(a.cols*b.cols), rows(a.cols), cols(b.cols), ld(a.cols) { gemm("T", a, "N", b, 1.0, 0.0); } GeneralMatrix::GeneralMatrix(const GeneralMatrix& a, const char* dum1, const GeneralMatrix& b, const char* dum2) : data(a.cols*b.rows), rows(a.cols), cols(b.rows), ld(a.cols) { gemm("T", a, "T", b, 1.0, 0.0); } GeneralMatrix::~GeneralMatrix() { } void GeneralMatrix::place(const ConstGeneralMatrix& m, int i, int j) { if (i + m.numRows() > numRows() || j + m.numCols() > numCols()) throw SYLV_MES_EXCEPTION("Bad submatrix placement, matrix dimensions exceeded."); GeneralMatrix tmpsub(*this, i, j, m.numRows(), m.numCols()); tmpsub.copy(m); } void GeneralMatrix::mult(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b) { gemm("N", a, "N", b, 1.0, 0.0); } void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b, double mult) { gemm("N", a, "N", b, mult, 1.0); } void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const ConstGeneralMatrix& b, const char* dum, double mult) { gemm("N", a, "T", b, mult, 1.0); } void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const char* dum, const ConstGeneralMatrix& b, double mult) { gemm("T", a, "N", b, mult, 1.0); } void GeneralMatrix::multAndAdd(const ConstGeneralMatrix& a, const char* dum1, const ConstGeneralMatrix& b, const char* dum2, double mult) { gemm("T", a, "T", b, mult, 1.0); } void GeneralMatrix::addOuter(const ConstVector& a, double mult) { if (numRows() != numCols()) throw SYLV_MES_EXCEPTION("Matrix is not square in GeneralMatrix::addOuter."); if (numRows() != a.length()) throw SYLV_MES_EXCEPTION("Wrong length of a vector in GeneralMatrix::addOuter."); // since BLAS dsyr (symmetric rank 1 update) assumes symmetricity, we do this manually for (int i = 0; i < numRows(); i++) for (int j = i; j < numRows(); j++) { double s = mult*a[i]*a[j]; get(i,j) = get(i,j) + s; if (i != j) get(j,i) = get(j,i) + s; } } void GeneralMatrix::multRight(const ConstGeneralMatrix& m) { gemm_partial_right("N", m, 1.0, 0.0); } void GeneralMatrix::multLeft(const ConstGeneralMatrix& m) { gemm_partial_left("N", m, 1.0, 0.0); } void GeneralMatrix::multRightTrans(const ConstGeneralMatrix& m) { gemm_partial_right("T", m, 1.0, 0.0); } void GeneralMatrix::multLeftTrans(const ConstGeneralMatrix& m) { gemm_partial_left("T", m, 1.0, 0.0); } // here we must be careful for ld void GeneralMatrix::zeros() { if (ld == rows) data.zeros(); else { for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) get(i,j) = 0; } } void GeneralMatrix::unit() { for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) if (i == j) get(i,j) = 1.0; else get(i,j) = 0.0; } void GeneralMatrix::nans() { for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) get(i,j) = std::numeric_limits::quiet_NaN(); } void GeneralMatrix::infs() { for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) get(i,j) = std::numeric_limits::infinity(); } // here we must be careful for ld void GeneralMatrix::mult(double a) { if (ld == rows) data.mult(a); else { for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) get(i,j) *= a; } } // here we must be careful for ld void GeneralMatrix::add(double a, const ConstGeneralMatrix& m) { if (m.numRows() != rows || m.numCols() != cols) throw SYLV_MES_EXCEPTION("Matrix has different size in GeneralMatrix::add."); if (ld == rows && m.ld == m.rows) data.add(a, m.data); else { for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) get(i,j) += a*m.get(i,j); } } void GeneralMatrix::add(double a, const ConstGeneralMatrix& m, const char* dum) { if (m.numRows() != cols || m.numCols() != rows) throw SYLV_MES_EXCEPTION("Matrix has different size in GeneralMatrix::add."); for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) get(i,j) += a*m.get(j,i); } void GeneralMatrix::copy(const ConstGeneralMatrix& m, int ioff, int joff) { for (int i = 0; i < rows; i++) for (int j = 0; j < cols; j++) get(i,j) = m.get(i+ioff,j+joff); } void GeneralMatrix::gemm(const char* transa, const ConstGeneralMatrix& a, const char* transb, const ConstGeneralMatrix& b, double alpha, double beta) { int opa_rows = a.numRows(); int opa_cols = a.numCols(); if (!strcmp(transa, "T")) { opa_rows = a.numCols(); opa_cols = a.numRows(); } int opb_rows = b.numRows(); int opb_cols = b.numCols(); if (!strcmp(transb, "T")) { opb_rows = b.numCols(); opb_cols = b.numRows(); } if (opa_rows != numRows() || opb_cols != numCols() || opa_cols != opb_rows) { throw SYLV_MES_EXCEPTION("Wrong dimensions for matrix multiplication."); } blas_int m = opa_rows; blas_int n = opb_cols; blas_int k = opa_cols; blas_int lda = a.ld; blas_int ldb = b.ld; blas_int ldc = ld; if (lda > 0 && ldb > 0 && ldc > 0) { dgemm(transa, transb, &m, &n, &k, &alpha, a.data.base(), &lda, b.data.base(), &ldb, &beta, data.base(), &ldc); } else if (numRows()*numCols() > 0) { if (beta == 0.0) zeros(); else mult(beta); } } void GeneralMatrix::gemm_partial_left(const char* trans, const ConstGeneralMatrix& m, double alpha, double beta) { int icol; for (icol = 0; icol + md_length < cols; icol += md_length) { GeneralMatrix incopy((const GeneralMatrix&)*this, 0, icol, rows, md_length); GeneralMatrix inplace((GeneralMatrix&)*this, 0, icol, rows, md_length); inplace.gemm(trans, m, "N", ConstGeneralMatrix(incopy), alpha, beta); } if (cols > icol) { GeneralMatrix incopy((const GeneralMatrix&)*this, 0, icol, rows, cols - icol); GeneralMatrix inplace((GeneralMatrix&)*this, 0, icol, rows, cols - icol); inplace.gemm(trans, m, "N", ConstGeneralMatrix(incopy), alpha, beta); } } void GeneralMatrix::gemm_partial_right(const char* trans, const ConstGeneralMatrix& m, double alpha, double beta) { int irow; for (irow = 0; irow + md_length < rows; irow += md_length) { GeneralMatrix incopy((const GeneralMatrix&)*this, irow, 0, md_length, cols); GeneralMatrix inplace((GeneralMatrix&)*this, irow, 0, md_length, cols); inplace.gemm("N", ConstGeneralMatrix(incopy), trans, m, alpha, beta); } if (rows > irow) { GeneralMatrix incopy((const GeneralMatrix&)*this, irow, 0, rows - irow, cols); GeneralMatrix inplace((GeneralMatrix&)*this, irow, 0, rows - irow, cols); inplace.gemm("N", ConstGeneralMatrix(incopy), trans, m, alpha, beta); } } ConstGeneralMatrix::ConstGeneralMatrix(const GeneralMatrix& m, int i, int j, int nrows, int ncols) : data(m.getData(), j*m.getLD()+i, (ncols-1)*m.getLD()+nrows), rows(nrows), cols(ncols), ld(m.getLD()) { // can check that the submatirx is fully in the matrix } ConstGeneralMatrix::ConstGeneralMatrix(const ConstGeneralMatrix& m, int i, int j, int nrows, int ncols) : data(m.getData(), j*m.getLD()+i, (ncols-1)*m.getLD()+nrows), rows(nrows), cols(ncols), ld(m.getLD()) { // can check that the submatirx is fully in the matrix } ConstGeneralMatrix::ConstGeneralMatrix(const GeneralMatrix& m) : data(m.data), rows(m.rows), cols(m.cols), ld(m.ld) {} double ConstGeneralMatrix::getNormInf() const { double norm = 0.0; for (int i = 0; i < numRows(); i++) { ConstVector rowi(data.base()+i, ld, cols); double normi = rowi.getNorm1(); if (norm < normi) norm = normi; } return norm; } double ConstGeneralMatrix::getNorm1() const { double norm = 0.0; for (int j = 0; j < numCols(); j++) { ConstVector colj(data.base()+ld*j, 1, rows); double normj = colj.getNorm1(); if (norm < normj) norm = normj; } return norm; } void ConstGeneralMatrix::multVec(double a, Vector& x, double b, const ConstVector& d) const { if (x.length() != rows || cols != d.length()) { throw SYLV_MES_EXCEPTION("Wrong dimensions for vector multiply."); } if (rows > 0) { blas_int mm = rows; blas_int nn = cols; double alpha = b; blas_int lda = ld; blas_int incx = d.skip(); double beta = a; blas_int incy = x.skip(); dgemv("N", &mm, &nn, &alpha, data.base(), &lda, d.base(), &incx, &beta, x.base(), &incy); } } void ConstGeneralMatrix::multVecTrans(double a, Vector& x, double b, const ConstVector& d) const { if (x.length() != cols || rows != d.length()) { throw SYLV_MES_EXCEPTION("Wrong dimensions for vector multiply."); } if (rows > 0) { blas_int mm = rows; blas_int nn = cols; double alpha = b; blas_int lda = rows; blas_int incx = d.skip(); double beta = a; blas_int incy = x.skip(); dgemv("T", &mm, &nn, &alpha, data.base(), &lda, d.base(), &incx, &beta, x.base(), &incy); } } /* m = inv(this)*m */ void ConstGeneralMatrix::multInvLeft(const char* trans, int mrows, int mcols, int mld, double* d) const { if (rows != cols) { throw SYLV_MES_EXCEPTION("The matrix is not square for inversion."); } if (cols != mrows) { throw SYLV_MES_EXCEPTION("Wrong dimensions for matrix inverse mutliply."); } if (rows > 0) { GeneralMatrix inv(*this); lapack_int* ipiv = new lapack_int[rows]; lapack_int info; lapack_int rows2 = rows, mcols2 = mcols, mld2 = mld; dgetrf(&rows2, &rows2, inv.getData().base(), &rows2, ipiv, &info); dgetrs(trans, &rows2, &mcols2, inv.base(), &rows2, ipiv, d, &mld2, &info); delete [] ipiv; } } /* m = inv(this)*m */ void ConstGeneralMatrix::multInvLeft(GeneralMatrix& m) const { multInvLeft("N", m.numRows(), m.numCols(), m.getLD(), m.getData().base()); } /* m = inv(this')*m */ void ConstGeneralMatrix::multInvLeftTrans(GeneralMatrix& m) const { multInvLeft("T", m.numRows(), m.numCols(), m.getLD(), m.getData().base()); } /* d = inv(this)*d */ void ConstGeneralMatrix::multInvLeft(Vector& d) const { if (d.skip() != 1) { throw SYLV_MES_EXCEPTION("Skip!=1 not implemented in ConstGeneralMatrix::multInvLeft(Vector&)"); } multInvLeft("N", d.length(), 1, d.length(), d.base()); } /* d = inv(this')*d */ void ConstGeneralMatrix::multInvLeftTrans(Vector& d) const { if (d.skip() != 1) { throw SYLV_MES_EXCEPTION("Skip!=1 not implemented in ConstGeneralMatrix::multInvLeft(Vector&)"); } multInvLeft("T", d.length(), 1, d.length(), d.base()); } bool ConstGeneralMatrix::isFinite() const { for (int i = 0; i < numRows(); i++) for (int j = 0; j < numCols(); j++) if (! std::isfinite(get(i,j))) return false; return true; } bool ConstGeneralMatrix::isZero() const { for (int i = 0; i < numRows(); i++) for (int j = 0; j < numCols(); j++) if (get(i,j) != 0.0) return false; return true; } void ConstGeneralMatrix::print() const { printf("rows=%d, cols=%d\n",rows, cols); for (int i = 0; i < rows; i++) { printf("row %d:\n",i); for (int j = 0; j < cols; j++) { printf("%6.3g ",get(i,j)); } printf("\n"); } } void SVDDecomp::construct(const GeneralMatrix& A) { // quick exit if empty matrix if (minmn == 0) { U.unit(); VT.unit(); conv = true; return; } // make copy of the matrix GeneralMatrix AA(A); lapack_int m = AA.numRows(); lapack_int n = AA.numCols(); double* a = AA.base(); lapack_int lda = AA.getLD(); double* s = sigma.base(); double* u = U.base(); lapack_int ldu = U.getLD(); double* vt = VT.base(); lapack_int ldvt = VT.getLD(); double tmpwork; lapack_int lwork = -1; lapack_int info; lapack_int* iwork = new lapack_int[8*minmn]; // query for optimal lwork dgesdd("A", &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, &tmpwork, &lwork, iwork, &info); lwork = (lapack_int)tmpwork; Vector work(lwork); // do the decomposition dgesdd("A", &m, &n, a, &lda, s, u, &ldu, vt, &ldvt, work.base(), &lwork, iwork, &info); delete [] iwork; if (info < 0) throw SYLV_MES_EXCEPTION("Internal error in SVDDecomp constructor"); if (info == 0) conv = true; } void SVDDecomp::solve(const GeneralMatrix& B, GeneralMatrix& X) const { if (B.numRows() != U.numRows()) throw SYLV_MES_EXCEPTION("Incompatible number of rows "); // reciprocal condition number for determination of zeros in the // end of sigma double rcond = 1e-13; // solve U: B = U^T*B GeneralMatrix UTB(U, "trans", B); // determine nz=number of zeros in the end of sigma int nz = 0; while (nz < minmn && sigma[minmn-1-nz] < rcond*sigma[0]) nz++; // take relevant B for sigma inversion int m = U.numRows(); int n = VT.numCols(); GeneralMatrix Bprime(UTB, m-minmn, 0, minmn-nz, B.numCols()); // solve sigma for (int i = 0; i < minmn-nz; i++) Vector(i, Bprime).mult(1.0/sigma[i]); // solve VT X.zeros(); //- copy Bprime to right place of X for (int i = 0; i < minmn-nz; i++) Vector(n-minmn+i, X) = ConstVector(i, Bprime); //- multiply with VT X.multLeftTrans(VT); }