function [ProposalStateVector,Weights] = conditional_filter_proposal(ReducedForm,obs,StateVectors,SampleWeights,Q_lower_triangular_cholesky,H_lower_triangular_cholesky,H,DynareOptions,normconst2) % % Computes the proposal for each past particle using Gaussian approximations % for the state errors and the Kalman filter % % INPUTS % reduced_form_model [structure] Matlab's structure describing the reduced form model. % reduced_form_model.measurement.H [double] (pp x pp) variance matrix of measurement errors. % reduced_form_model.state.Q [double] (qq x qq) variance matrix of state errors. % reduced_form_model.state.dr [structure] output of resol.m. % Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables. % % OUTPUTS % LIK [double] scalar, likelihood % lik [double] vector, density of observations in each period. % % REFERENCES % % NOTES % The vector "lik" is used to evaluate the jacobian of the likelihood. % Copyright (C) 2012-2013 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . % % AUTHOR(S) frederic DOT karame AT univ DASH lemans DOT fr % stephane DOT adjemian AT univ DASH lemans DOT fr persistent init_flag2 mf0 mf1 persistent number_of_state_variables number_of_observed_variables persistent number_of_structural_innovations % Set local state space model (first-order approximation). ghx = ReducedForm.ghx; ghu = ReducedForm.ghu; % Set local state space model (second-order approximation). ghxx = ReducedForm.ghxx; ghuu = ReducedForm.ghuu; ghxu = ReducedForm.ghxu; if any(any(isnan(ghx))) || any(any(isnan(ghu))) || any(any(isnan(ghxx))) || any(any(isnan(ghuu))) || any(any(isnan(ghxu))) || ... any(any(isinf(ghx))) || any(any(isinf(ghu))) || any(any(isinf(ghxx))) || any(any(isinf(ghuu))) || any(any(isinf(ghxu))) ... any(any(abs(ghx)>1e4)) || any(any(abs(ghu)>1e4)) || any(any(abs(ghxx)>1e4)) || any(any(abs(ghuu)>1e4)) || any(any(abs(ghxu)>1e4)) ghx ghu ghxx ghuu ghxu end constant = ReducedForm.constant; state_variables_steady_state = ReducedForm.state_variables_steady_state; % Set persistent variables. if isempty(init_flag2) mf0 = ReducedForm.mf0; mf1 = ReducedForm.mf1; number_of_state_variables = length(mf0); number_of_observed_variables = length(mf1); number_of_structural_innovations = length(ReducedForm.Q); init_flag2 = 1; end if strcmpi(DynareOptions.particle.IS_approximation_method,'cubature') || strcmpi(DynareOptions.particle.IS_approximation_method,'monte-carlo') [nodes,weights] = spherical_radial_sigma_points(number_of_structural_innovations) ; weights_c = weights ; end if strcmpi(DynareOptions.particle.IS_approximation_method,'quadrature') [nodes,weights] = nwspgr('GQN',number_of_structural_innovations,DynareOptions.particle.smolyak_accuracy) ; weights_c = weights ; end if strcmpi(DynareOptions.particle.IS_approximation_method,'unscented') [nodes,weights,weights_c] = unscented_sigma_points(number_of_structural_innovations,DynareOptions) ; end epsilon = Q_lower_triangular_cholesky*(nodes') ; yhat = repmat(StateVectors-state_variables_steady_state,1,size(epsilon,2)) ; tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,DynareOptions.threads.local_state_space_iteration_2); PredictedStateMean = tmp(mf0,:)*weights ; PredictedObservedMean = tmp(mf1,:)*weights; if strcmpi(DynareOptions.particle.IS_approximation_method,'cubature') || ... strcmpi(DynareOptions.particle.IS_approximation_method,'monte-carlo') PredictedStateMean = sum(PredictedStateMean,2) ; PredictedObservedMean = sum(PredictedObservedMean,2) ; dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean)'.*sqrt(weights) ; dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean)'.*sqrt(weights); big_mat = [dObserved dState ; [H_lower_triangular_cholesky zeros(number_of_observed_variables,number_of_state_variables)] ] ; [mat1,mat] = qr2(big_mat,0) ; mat = mat' ; clear('mat1'); PredictedObservedVarianceSquareRoot = mat(1:number_of_observed_variables,1:number_of_observed_variables) ; CovarianceObservedStateSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),1:number_of_observed_variables) ; StateVectorVarianceSquareRoot = mat(number_of_observed_variables+(1:number_of_state_variables),number_of_observed_variables+(1:number_of_state_variables)) ; StateVectorMean = PredictedStateMean + (CovarianceObservedStateSquareRoot/PredictedObservedVarianceSquareRoot)*(obs - PredictedObservedMean) ; end if strcmpi(DynareOptions.particle.IS_approximation_method,'quadrature') || ... strcmpi(DynareOptions.particle.IS_approximation_method,'unscented') dState = bsxfun(@minus,tmp(mf0,:),PredictedStateMean); dObserved = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); PredictedStateVariance = dState*diag(weights_c)*dState'; PredictedObservedVariance = dObserved*diag(weights_c)*dObserved' + H; PredictedStateAndObservedCovariance = dState*diag(weights_c)*dObserved'; KalmanFilterGain = PredictedStateAndObservedCovariance/PredictedObservedVariance ; StateVectorMean = PredictedStateMean + KalmanFilterGain*(obs - PredictedObservedMean); StateVectorVariance = PredictedStateVariance - KalmanFilterGain*PredictedObservedVariance*KalmanFilterGain'; StateVectorVariance = .5*(StateVectorVariance+StateVectorVariance'); StateVectorVarianceSquareRoot = reduced_rank_cholesky(StateVectorVariance)'; end ProposalStateVector = StateVectorVarianceSquareRoot*randn(size(StateVectorVarianceSquareRoot,2),1)+StateVectorMean ; ypred = measurement_equations(ProposalStateVector,ReducedForm,DynareOptions) ; foo = H_lower_triangular_cholesky \ (obs - ypred) ; likelihood = exp(-0.5*(foo)'*foo)/normconst2 + 1e-99 ; Weights = SampleWeights.*likelihood ;