function [flag,endo_simul,err] = solve_perfect_foresight_model(endo_simul,exo_simul,pfm) % Copyright (C) 2012-2020 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . flag = 0; err = 0; stop = 0; nan_flag = 0; model_dynamic = pfm.dynamic_model; Y = endo_simul(:); if pfm.verbose disp (['-----------------------------------------------------']) ; disp (['MODEL SIMULATION :']) ; fprintf('\n') ; end if pfm.use_bytecode try endo_simul=bytecode(Y, exo_simul, pfm.params); flag = 0; catch ME disp(ME.message); flag = 1; end return end z = Y(find(pfm.lead_lag_incidence')); [d1,jacobian] = model_dynamic(z,exo_simul,pfm.params,pfm.steady_state,2); % Initialization of the jacobian of the stacked model. A = sparse([],[],[],pfm.periods*pfm.ny,pfm.periods*pfm.ny,pfm.periods*nnz(jacobian)); % Initialization of the Newton residuals. res = zeros(pfm.periods*pfm.ny,1); h1 = clock; % Newton loop. for iter = 1:pfm.maxit_ h2 = clock; i_rows = 1:pfm.ny; i_cols = find(pfm.lead_lag_incidence'); i_cols_A = i_cols; % Fill the jacobian of the stacked model. for it = 2:(pfm.periods+1) [d1,jacobian] = model_dynamic(Y(i_cols),exo_simul,pfm.params,pfm.steady_state,it); if it == 2 A(i_rows,pfm.i_cols_A1) = jacobian(:,pfm.i_cols_1); elseif it == pfm.periods+1 A(i_rows,i_cols_A(pfm.i_cols_T)) = jacobian(:,pfm.i_cols_T); else A(i_rows,i_cols_A) = jacobian(:,pfm.i_cols_j); end res(i_rows) = d1; i_rows = i_rows + pfm.ny; i_cols = i_cols + pfm.ny; if it > 2 i_cols_A = i_cols_A + pfm.ny; end end % Stop if Newton residuals are zero. err = max(abs(res)); if err < pfm.tolerance stop = 1 ; if pfm.verbose fprintf('\n') ; disp([' Total time of simulation :' num2str(etime(clock,h1))]) ; fprintf('\n') ; disp([' Convergency obtained.']) ; fprintf('\n') ; end flag = 0;% Convergency obtained. endo_simul = reshape(Y,pfm.ny,pfm.periods+2); break end % Compute the Newton step. dy = -A\res; if any(isnan(dy)) nan_flag = 1; break end % Update the endogenous variables paths. Y(pfm.i_upd) = Y(pfm.i_upd) + dy; end if ~stop if pfm.verbose fprintf('\n') ; disp([' Total time of simulation :' num2str(etime(clock,h1))]) ; fprintf('\n') ; disp(['WARNING : maximum number of iterations is reached (modify options_.simul.maxit).']) ; fprintf('\n') ; end flag = 1;% more iterations are needed. endo_simul = 1; end if nan_flag if pfm.verbose fprintf('\n') ; disp([' Total time of simulation :' num2str(etime(clock,h1))]) ; fprintf('\n') ; disp(['WARNING : NaNs!']) ; fprintf('\n') ; end flag = 1; endo_simul = 1; end if pfm.verbose disp (['-----------------------------------------------------']) ; end