// --+ options: stochastic,transform_unary_ops,json=compute +-- var foo x1 x2 x1bar x2bar; varexo ex1 ex2 ex1bar ex2bar; parameters a_x1_0 a_x1_0_ a_x1_1 a_x1_2 a_x1_x2_1 a_x1_x2_2 a_x2_0 a_x2_1 a_x2_2 a_x2_x1_1 a_x2_x1_2 beta alpha ; a_x1_0 = -.9; a_x1_0_ = -.8; a_x1_1 = .4; a_x1_2 = .3; a_x1_x2_1 = .1; a_x1_x2_2 = .2; a_x2_0 = -.9; a_x2_1 = .2; a_x2_2 = -.1; a_x2_x1_1 = -.1; a_x2_x1_2 = .2; beta = 1/(1+.02); alpha = .5; // Define a TREND_COMPONENT model from a subset of equations in the model block. trend_component_model(model_name=toto, eqtags=['eq:x1', 'eq:x2', 'eq:x1bar', 'eq:x2bar'], targets=['eq:x1bar', 'eq:x2bar']); /* Define a VAR_EXPECTATION_MODEL ** ------------------------------ ** ** model_name: the name of the VAR_EXPECTATION_MODEL (mandatory). ** auxiliary_model_name: the name of the VAR model used for the expectations (mandatory). ** variable: the name of the variable to be forecasted (mandatory). ** horizon: the horizon forecast (mandatory). ** discount: the discount factor, which can be a value or a declared parameter (default is 1.0, no discounting). ** ** ** The `horizon` parameter can be an integer in which case the (discounted) `horizon` step ahead forecast ** is computed using the VAR model `var_model_name`. Alternatively, `horizon` can be a range. In this case ** VAR_EXPECTATION_MODEL returns a discounted sum of expected values. If `horizon` is set equal to the range ** 0:Inf, then VAR_EXPECTATION_MODEL computes: ** ** ∑ βʰ Eₜ[yₜ₊ₕ] ** ** where the sum is over h=0,…,∞ and the conditional expectations are computed with VAR model `var_model_name`. */ var_expectation_model(model_name = varexp, expression = x1/100-alpha*x2, auxiliary_model_name = toto, horizon = 15:50, discount = beta) ; model; [name='eq:x1', data_type='nonstationary'] diff(x1) = a_x1_0*(x1(-1)-x1bar(-1))+a_x1_0_*(x2(-1)-x2bar(-1)) + a_x1_1*diff(x1(-1)) + a_x1_2*diff(x1(-2)) + + a_x1_x2_1*diff(x2(-1)) + a_x1_x2_2*diff(x2(-2)) + ex1; [name='eq:x2', data_type='nonstationary'] diff(x2) = a_x2_0*(x2(-1)-x2bar(-1)) + a_x2_1*diff(x1(-1)) + a_x2_2*diff(x1(-2)) + a_x2_x1_1*diff(x2(-1)) + a_x2_x1_2*diff(x2(-2)) + ex2; [name='eq:x1bar', data_type='nonstationary'] x1bar = x1bar(-1) + ex1bar; [name='eq:x2bar', data_type='nonstationary'] x2bar = x2bar(-1) + ex2bar; foo = .5*foo(-1) + var_expectation(varexp); end; // Initialize the VAR expectation model, will build the companion matrix of the VAR. var_expectation.initialize('varexp') // Update VAR_EXPECTATION reduced form parameters var_expectation.update('varexp'); weights = M_.params(M_.var_expectation.varexp.param_indices); if ~all(weights(1:6)) || ~all(weights(9:10)) || weights(7) || weights(8) || weights(11) || weights(12) error('Wrong reduced form parameter for VAR_EXPECTATION_MODEL') end