var Capital , Output, Labour, Consumption, Efficiency, efficiency ; varexo EfficiencyInnovation; parameters beta, theta, tau, alpha, Epsilon, delta, rho, effstar, sigma; beta = 0.990; theta = 0.357; tau = 30.000; alpha = 0.450; delta = 0.020; rho = 0.950; effstar = 1.500; sigma = 0.010; Epsilon = 0.500; model; #Psi = (Epsilon-1)/Epsilon; // Eq. n°1: efficiency = rho*efficiency(-1) + sigma*EfficiencyInnovation; // Eq. n°2: Efficiency = effstar*exp(efficiency); // Eq. n°3: Output = Efficiency*(alpha*Capital(-1)^Psi+(1-alpha)*Labour^Psi)^(1/Psi); // Eq. n°4: Consumption + Capital - Output - (1-delta)*Capital(-1); // Eq. n°5: ((1-theta)/theta)*(Consumption/(1-Labour)) - (1-alpha)*Efficiency^((1-Psi))*(alpha*(Capital(-1)/Labour)^Psi+1-alpha)^((1-Psi)/Psi); // Eq. n°6: (((Consumption^theta)*((1-Labour)^(1-theta)))^(1-tau))/Consumption - beta*(Consumption(1)^theta*(1-Labour(1))^(1-theta))^(1-tau)/Consumption(1)*(alpha*Efficiency(1)^Psi*(Output(1)/Capital)^(1-Psi)+1-delta); end; steady_state_model; efficiency = 0; Efficiency = effstar; psi = (Epsilon-1)/Epsilon; Output_per_unit_of_Capital = ( (1/beta-1+delta) / (alpha*effstar^psi) )^(1/(1-psi)); Consumption_per_unit_of_Capital = Output_per_unit_of_Capital-delta; Labour_per_unit_of_Capital = ((Output_per_unit_of_Capital/Efficiency)^psi-alpha)^(1/psi)/(1-alpha)^(1/psi); gamma_1 = theta*(1-alpha)/(1-theta)*(Output_per_unit_of_Capital/Labour_per_unit_of_Capital)^(1-psi); gamma_2 = (Output_per_unit_of_Capital-delta)/Labour_per_unit_of_Capital; Labour = 1/(1+gamma_2/gamma_1); Output_per_unit_of_Labour=Output_per_unit_of_Capital/Labour_per_unit_of_Capital; Consumption_per_unit_of_Labour=Consumption_per_unit_of_Capital/Labour_per_unit_of_Capital; ShareOfCapital= alpha^(1/(1-psi))*effstar^psi/(1/beta-1+delta)^(psi/(1-psi)); Consumption = Consumption_per_unit_of_Labour*Labour; Capital = Labour/Labour_per_unit_of_Capital; Output = Output_per_unit_of_Capital*Capital; end; shocks; var EfficiencyInnovation = 1; end;