/* Generates gaussian random deviates from uniform random deviates. ** ** Pseudo code of the algorithm is given at http://home.online.no/~pjacklam/notes/invnorm ** ** Copyright © 2010-2019 Dynare Team ** ** This file is part of Dynare. ** ** Dynare is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 3 of the License, or ** (at your option) any later version. ** ** Dynare is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with Dynare. If not, see . ** ** AUTHOR(S): stephane DOT adjemian AT univ DASH lemans DOT fr */ #include #include #include #include #include using namespace std; constexpr double lb = .02425; constexpr double ub = .97575; template T icdf(const T uniform) /* ** This function invert the gaussian cumulative distribution function. ** */ { static T A[6] = { -3.969683028665376e+01, 2.209460984245205e+02, -2.759285104469687e+02, 1.383577518672690e+02, -3.066479806614716e+01, 2.506628277459239e+00 }; static T B[5] = { -5.447609879822406e+01, 1.615858368580409e+02, -1.556989798598866e+02, 6.680131188771972e+01, -1.328068155288572e+01 }; static T C[6] = { -7.784894002430293e-03, -3.223964580411365e-01, -2.400758277161838e+00, -2.549732539343734e+00, 4.374664141464968e+00, 2.938163982698783e+00 }; static T D[4] = { 7.784695709041462e-03, 3.224671290700398e-01, 2.445134137142996e+00, 3.754408661907416e+00 }; T gaussian = static_cast(0.0); if (0 < uniform && uniform < lb) { T tmp; tmp = sqrt(-2*log(uniform)); gaussian = (((((C[0]*tmp+C[1])*tmp+C[2])*tmp+C[3])*tmp+C[4])*tmp+C[5])/((((D[0]*tmp+D[1])*tmp+D[2])*tmp+D[3])*tmp+1); } else { if (lb <= uniform && uniform <= ub) { T tmp, TMP; tmp = uniform - .5; TMP = tmp*tmp; gaussian = (((((A[0]*TMP+A[1])*TMP+A[2])*TMP+A[3])*TMP+A[4])*TMP+A[5])*tmp/(((((B[0]*TMP+B[1])*TMP+B[2])*TMP+B[3])*TMP+B[4])*TMP+1); } else { if (ub < uniform && uniform < 1) { T tmp; tmp = sqrt(-2*log(1-uniform)); gaussian = -(((((C[0]*tmp+C[1])*tmp+C[2])*tmp+C[3])*tmp+C[4])*tmp+C[5])/((((D[0]*tmp+D[1])*tmp+D[2])*tmp+D[3])*tmp+1); } } } if (0 < uniform && uniform < 1) { T tmp, tmp_; tmp = .5*erfc(-gaussian/sqrt(2.0))-uniform; tmp_ = tmp*sqrt(2*M_PI)*exp(.5*gaussian*gaussian); gaussian = gaussian - tmp_/(1+.5*gaussian*tmp_); } if (uniform == 0) gaussian = -numeric_limits::infinity(); if (uniform == 1) gaussian = numeric_limits::infinity(); return gaussian; } template void icdfm(int n, T *U) { #pragma omp parallel for for (int i = 0; i < n; i++) U[i] = icdf(U[i]); return; } template void icdfmSigma(int d, int n, T *U, const double *LowerCholSigma) { double one = 1.0; double zero = 0.0; blas_int dd(d); blas_int nn(n); icdfm(n*d, U); double tmp[n*d]; dgemm("N", "N", &dd, &nn, &dd, &one, LowerCholSigma, &dd, U, &dd, &zero, tmp, &dd); copy_n(tmp, d*n, U); } template void usphere(int d, int n, T *U) { icdfm(n*d, U); #pragma omp parallel for for (int j = 0; j < n; j++) // sequence index. { int k = j*d; double norm = 0.0; for (int i = 0; i < d; i++) // dimension index. norm = norm + U[k+i]*U[k+i]; norm = sqrt(norm); for (int i = 0; i < d; i++) // dimension index. U[k+i] = U[k+i]/norm; } } template void usphereRadius(int d, int n, double radius, T *U) { icdfm(n*d, U); #pragma omp parallel for for (int j = 0; j < n; j++) // sequence index. { int k = j*d; double norm = 0.0; for (int i = 0; i < d; i++) // dimension index. norm = norm + U[k+i]*U[k+i]; norm = sqrt(norm); for (int i = 0; i < d; i++) // dimension index. U[k+i] = radius*U[k+i]/norm; } }