/* * Copyright © 2005 Ondra Kamenik * Copyright © 2019 Dynare Team * * This file is part of Dynare. * * Dynare is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Dynare is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Dynare. If not, see . */ #include "quasi_mcarlo.hh" #include #include #include #include /* Here in the constructor, we have to calculate a maximum length of ‘coeff’ array for a given ‘base’ and given maximum ‘maxn’. After allocation, we calculate the coefficients. */ RadicalInverse::RadicalInverse(int n, int b, int mxn) : num(n), base(b), maxn(mxn), coeff(static_cast(floor(log(static_cast(maxn))/log(static_cast(b)))+2), 0) { int nr = num; j = -1; do { j++; coeff[j] = nr % base; nr = nr / base; } while (nr > 0); } /* This evaluates the radical inverse. If there was no permutation, we have to calculate: c₀ c₁ cⱼ ── + ── + … + ──── b b² bʲ⁺¹ which is evaluated as: ⎛ ⎛⎛cⱼ 1 cⱼ₋₁⎞ 1 cⱼ₋₂⎞ ⎞ 1 c₀ ⎢…⎢⎢──·─ + ────⎥·─ + ────⎥…⎥·─ + ── ⎝ ⎝⎝ b b b ⎠ b b ⎠ ⎠ b b Now with permutation π, we have: ⎛ ⎛⎛π(cⱼ) 1 π(cⱼ₋₁)⎞ 1 π(cⱼ₋₂)⎞ ⎞ 1 π(c₀) ⎢…⎢⎢─────·─ + ───────⎥·─ + ───────⎥…⎥·─ + ───── ⎝ ⎝⎝ b b b ⎠ b b ⎠ ⎠ b b */ double RadicalInverse::eval(const PermutationScheme &p) const { double res = 0; for (int i = j; i >= 0; i--) { int cper = p.permute(i, base, coeff[i]); res = (cper + res)/base; } return res; } /* We just add 1 to the lowest coefficient and check for overflow with respect to the base. */ void RadicalInverse::increase() { // TODO: raise if num+1 > maxn num++; int i = 0; coeff[i]++; while (coeff[i] == base) { coeff[i] = 0; coeff[++i]++; } if (i > j) j = i; } /* Debug print. */ void RadicalInverse::print() const { std::cout << "n=" << num << " b=" << base << " c="; coeff.print(); } /* Here we have the first 170 primes. This means that we are not able to integrate dimensions greater than 170. */ std::array HaltonSequence::primes = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013 }; /* This takes first ‘dim’ primes and constructs ‘dim’ radical inverses and calls eval(). */ HaltonSequence::HaltonSequence(int n, int mxn, int dim, const PermutationScheme &p) : num(n), maxn(mxn), per(p), pt(dim) { // TODO: raise if dim > num_primes // TODO: raise if n > mxn for (int i = 0; i < dim; i++) ri.emplace_back(num, primes[i], maxn); eval(); } /* This calls RadicalInverse::increase() for all radical inverses and calls eval(). */ void HaltonSequence::increase() { for (auto &i : ri) i.increase(); num++; if (num <= maxn) eval(); } /* This sets point ‘pt’ to radical inverse evaluations in each dimension. */ void HaltonSequence::eval() { for (unsigned int i = 0; i < ri.size(); i++) pt[i] = ri[i].eval(per); } /* Debug print. */ void HaltonSequence::print() const { auto ff = std::cout.flags(); for (const auto &i : ri) i.print(); std::cout << "point=[ " << std::fixed << std::setprecision(6); for (unsigned int i = 0; i < ri.size(); i++) std::cout << std::setw(7) << pt[i] << ' '; std::cout << ']' << std::endl; std::cout.flags(ff); } qmcpit::qmcpit(const QMCSpecification &s, int n) : spec(s), halton{n, s.level(), s.dimen(), s.getPerScheme()}, sig{s.dimen()} { } bool qmcpit::operator==(const qmcpit &qpit) const { return &spec == &qpit.spec && halton.getNum() == qpit.halton.getNum(); } qmcpit & qmcpit::operator++() { halton.increase(); return *this; } double qmcpit::weight() const { return 1.0/spec.level(); } int WarnockPerScheme::permute(int i, int base, int c) const { return (c+i) % base; } int ReversePerScheme::permute(int i, int base, int c) const { return (base-c) % base; }