function [Pstar,Pinf] = compute_Pinf_Pstar(mf,T,R,Q,qz_criterium, restrict_columns) % function [Z,ST,QT,R1,Pstar,Pinf] = schur_statespace_transformation(mf,T,R,Q,qz_criterium, restrict_columns) % Kitagawa transformation of state space system with a quasi-triangular % transition matrix with unit roots at the top, but excluding zero columns of the transition matrix. % Computation of Pstar and Pinf for Durbin and Koopman Diffuse filter % % The transformed state space is % y = [ss; z; x]; % s = static variables (zero columns of T) % z = unit roots % x = stable roots % ss = s - z = stationarized static variables % % INPUTS % mf [integer] vector of indices of observed variables in % state vector % T [double] matrix of transition % R [double] matrix of structural shock effects % Q [double] matrix of covariance of structural shocks % qz_criterium [double] numerical criterium for unit roots % % OUTPUTS % Pstar [double] matrix of covariance of stationary part % Pinf [double] matrix of covariance initialization for % nonstationary part % % ALGORITHM % Real Schur transformation of transition equation % % SPECIAL REQUIREMENTS % None % Copyright (C) 2006-2017 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . np = size(T,1); % perform Kitagawa transformation [QT,ST] = schur(T); e1 = abs(ordeig(ST)) > 2-qz_criterium; [QT,ST] = ordschur(QT,ST,e1); k = find(abs(ordeig(ST)) > 2-qz_criterium); nk = length(k); nk1 = nk+1; Pstar = zeros(np,np); R1 = QT'*R; B = R1*Q*R1'; % computes variance of stationary block (lower right) i = np; while i >= nk+2 if ST(i,i-1) == 0 if i == np c = zeros(np-nk,1); else c = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i,i+1:end)')+... ST(i,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i); end q = eye(i-nk)-ST(nk1:i,nk1:i)*ST(i,i); Pstar(nk1:i,i) = q\(B(nk1:i,i)+c); Pstar(i,nk1:i-1) = Pstar(nk1:i-1,i)'; i = i - 1; else if i == np c = zeros(np-nk,1); c1 = zeros(np-nk,1); else c = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i,i+1:end)')+... ST(i,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i)+... ST(i,i-1)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i-1); c1 = ST(nk1:i,:)*(Pstar(:,i+1:end)*ST(i-1,i+1:end)')+... ST(i-1,i-1)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i-1)+... ST(i-1,i)*ST(nk1:i,i+1:end)*Pstar(i+1:end,i); end q = [eye(i-nk)-ST(nk1:i,nk1:i)*ST(i,i) -ST(nk1:i,nk1:i)*ST(i,i-1);... -ST(nk1:i,nk1:i)*ST(i-1,i) eye(i-nk)-ST(nk1:i,nk1:i)*ST(i-1,i-1)]; z = q\[B(nk1:i,i)+c;B(nk1:i,i-1)+c1]; Pstar(nk1:i,i) = z(1:(i-nk)); Pstar(nk1:i,i-1) = z(i-nk+1:end); Pstar(i,nk1:i-1) = Pstar(nk1:i-1,i)'; Pstar(i-1,nk1:i-2) = Pstar(nk1:i-2,i-1)'; i = i - 2; end end if i == nk+1 c = ST(nk+1,:)*(Pstar(:,nk+2:end)*ST(nk1,nk+2:end)')+ST(nk1,nk1)*ST(nk1,nk+2:end)*Pstar(nk+2:end,nk1); Pstar(nk1,nk1)=(B(nk1,nk1)+c)/(1-ST(nk1,nk1)*ST(nk1,nk1)); end % stochastic trends with no influence on observed variables are % arbitrarily initialized to zero Pinf = zeros(np,np); Pinf(1:nk,1:nk) = eye(nk); for k = 1:nk if norm(QT(mf,:)*ST(:,k)) < 1e-8 Pinf(k,k) = 0; end end Pinf = QT*Pinf*QT'; Pstar = QT*Pstar*QT';