function [X,info] = quadratic_matrix_equation_solver(A,B,C,tol,maxit,line_search_flag,X) %@info: %! @deftypefn {Function File} {[@var{X1}, @var{info}] =} quadratic_matrix_equation_solver (@var{A},@var{B},@var{C},@var{tol},@var{maxit},@var{line_search_flag},@var{X0}) %! @anchor{logarithmic_reduction} %! @sp 1 %! Solves the quadratic matrix equation AX^2 + BX + C = 0 with a Newton algorithm. %! @sp 2 %! @strong{Inputs} %! @sp 1 %! @table @ @var %! @item A %! Square matrix of doubles, n*n. %! @item B %! Square matrix of doubles, n*n. %! @item C %! Square matrix of doubles, n*n. %! @item tol %! Scalar double, tolerance parameter. %! @item maxit %! Scalar integer, maximum number of iterations. %! @item line_search_flag %! Scalar integer, if nonzero an exact line search algorithm is used. %! @item X %! Square matrix of doubles, n*n, initial condition. %! @end table %! @sp 1 %! @strong{Outputs} %! @sp 1 %! @table @ @var %! @item X %! Square matrix of doubles, n*n, solution of the matrix equation. %! @item info %! Scalar integer, if nonzero the algorithm failed in finding the solution of the matrix equation. %! @end table %! @sp 2 %! @strong{This function is called by:} %! @sp 2 %! @strong{This function calls:} %! @sp 1 %! @ref{fastgensylv} %! @sp 2 %! @strong{References:} %! @sp 1 %! N.J. Higham and H.-M. Kim (2001), "Solving a quadratic matrix equation by Newton's method with exact line searches.", in SIAM J. Matrix Anal. Appl., Vol. 23, No. 3, pp. 303-316. %! @sp 2 %! @end deftypefn %@eod: % Copyright © 2012-2017 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . provide_initial_condition_to_fastgensylv = 0; info = 0; F = eval_quadratic_matrix_equation(A,B,C,X); if max(max(abs(F)))tol if provide_initial_condition_to_fastgensylv && exist('H','var') H = fastgensylv(A*X+B,A,X,F,tol,maxit,H); else try H = fastgensylv(A*X+B,A,X,F,tol,maxit); catch X = zeros(length(X)); H = fastgensylv(A*X+B,A,X,F,tol,maxit); end end if line_search_flag step_length = line_search(A,H,F); end X = X + step_length*H; F = eval_quadratic_matrix_equation(A,B,C,X); cc = max(max(abs(F))); kk = kk +1; end if cc>tol X = NaN(size(X)); info = 1; end function f = eval_quadratic_matrix_equation(A,B,C,X) f = C + (B + A*X)*X; function [p0,p1] = merit_polynomial(A,H,F) AHH = A*H*H; gamma = norm(AHH,'fro')^2; alpha = norm(F,'fro')^2; beta = trace(F*AHH*AHH*F); p0 = [gamma, -beta, alpha+beta, -2*alpha, alpha]; p1 = [4*gamma, -3*beta, 2*(alpha+beta), -2*alpha]; function t = line_search(A,H,F) [p0,p1] = merit_polynomial(A,H,F); if any(isnan(p0)) || any(isinf(p0)) t = 1.0; return end r = roots(p1); s = [Inf(3,1),r]; for i = 1:3 if isreal(r(i)) s(i,1) = p0(1)*r(i)^4 + p0(2)*r(i)^3 + p0(3)*r(i)^2 + p0(4)*r(i) + p0(5); end end s = sortrows(s,1); t = s(1,2); if t<=1e-12 || t>=2 t = 1; end %@test:1 %$ addpath ../matlab %$ %$ % Set the dimension of the problem to be solved %$ n = 200; %$ % Set the equation to be solved %$ A = eye(n); %$ B = diag(30*ones(n,1)); B(1,1) = 20; B(end,end) = 20; B = B - diag(10*ones(n-1,1),-1); B = B - diag(10*ones(n-1,1),1); %$ C = diag(15*ones(n,1)); C = C - diag(5*ones(n-1,1),-1); C = C - diag(5*ones(n-1,1),1); %$ %$ % Solve the equation with the cycle reduction algorithm %$ tic, X1 = cycle_reduction(C,B,A,1e-7); toc %$ %$ % Solve the equation with the logarithmic reduction algorithm %$ tic, X2 = quadratic_matrix_equation_solver(A,B,C,1e-16,100,1,zeros(n)); toc %$ %$ % Check the results. %$ t(1) = dassert(X1,X2,1e-12); %$ %$ T = all(t); %@eof:1