function [LIK,lik] = sequential_importance_particle_filter(ReducedForm,Y,start,ParticleOptions,ThreadsOptions, options_, M_) % Evaluates the likelihood of a nonlinear model with a particle filter (optionally with resampling). % Copyright © 2011-2022 Dynare Team % % This file is part of Dynare (particles module). % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare particles module is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . persistent init_flag persistent mf0 mf1 persistent number_of_particles number_of_state_variables persistent sample_size number_of_observed_variables number_of_structural_innovations % Set default value for start if isempty(start) start = 1; end % Set flag for prunning pruning = ParticleOptions.pruning; % Get steady state and mean. steadystate = ReducedForm.steadystate; constant = ReducedForm.constant; state_variables_steady_state = ReducedForm.state_variables_steady_state; order = options_.order; % Set persistent variables (if needed). if isempty(init_flag) mf0 = ReducedForm.mf0; mf1 = ReducedForm.mf1; sample_size = size(Y,2); number_of_state_variables = length(mf0); number_of_observed_variables = length(mf1); number_of_structural_innovations = length(ReducedForm.Q); number_of_particles = ParticleOptions.number_of_particles; init_flag = 1; end if ReducedForm.use_k_order_solver dr = ReducedForm.dr; udr = ReducedForm.udr; else % Set local state space model (first order approximation). ghx = ReducedForm.ghx; ghu = ReducedForm.ghu; % Set local state space model (second order approximation). ghxx = ReducedForm.ghxx; ghuu = ReducedForm.ghuu; ghxu = ReducedForm.ghxu; ghs2 = ReducedForm.ghs2; if order == 3 % Set local state space model (third order approximation). ghxxx = ReducedForm.ghxxx; ghuuu = ReducedForm.ghuuu; ghxxu = ReducedForm.ghxxu; ghxuu = ReducedForm.ghxuu; ghxss = ReducedForm.ghxss; ghuss = ReducedForm.ghuss; end end % Get covariance matrices. Q = ReducedForm.Q; % Covariance matrix of the structural innovations. H = ReducedForm.H; % Covariance matrix of the measurement errors. if isempty(H) H = 0; end % Initialization of the likelihood. const_lik = log(2*pi)*number_of_observed_variables +log(det(H)) ; lik = NaN(sample_size,1); % Get initial condition for the state vector. StateVectorMean = ReducedForm.StateVectorMean; StateVectorVarianceSquareRoot = chol(ReducedForm.StateVectorVariance)';%reduced_rank_cholesky(ReducedForm.StateVectorVariance)'; if pruning StateVectorMean_ = StateVectorMean; StateVectorVarianceSquareRoot_ = StateVectorVarianceSquareRoot; end % Get the rank of StateVectorVarianceSquareRoot state_variance_rank = size(StateVectorVarianceSquareRoot,2); % Factorize the covariance matrix of the structural innovations Q_lower_triangular_cholesky = chol(Q)'; % Set seed for randn(). options_=set_dynare_seed_local_options(options_,'default'); % Initialization of the weights across particles. weights = ones(1,number_of_particles)/number_of_particles ; StateVectors = bsxfun(@plus,StateVectorVarianceSquareRoot*randn(state_variance_rank,number_of_particles),StateVectorMean); if pruning if order == 2 StateVectors_ = StateVectors; state_variables_steady_state_ = state_variables_steady_state; mf0_ = mf0; elseif order == 3 StateVectors_ = repmat(StateVectors,3,1); state_variables_steady_state_ = repmat(state_variables_steady_state,3,1); mf0_ = repmat(mf0,1,3); mask2 = number_of_state_variables+1:2*number_of_state_variables; mask3 = 2*number_of_state_variables+1:3*number_of_state_variables; mf0_(mask2) = mf0_(mask2)+size(ghx,1); mf0_(mask3) = mf0_(mask3)+2*size(ghx,1); else error('Pruning is not available for orders > 3'); end end % Loop over observations for t=1:sample_size yhat = bsxfun(@minus,StateVectors,state_variables_steady_state); epsilon = Q_lower_triangular_cholesky*randn(number_of_structural_innovations,number_of_particles); if pruning yhat_ = bsxfun(@minus,StateVectors_,state_variables_steady_state_); if order == 2 [tmp, tmp_] = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,yhat_,steadystate,ThreadsOptions.local_state_space_iteration_2); elseif order == 3 [tmp, tmp_] = local_state_space_iteration_3(yhat_, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, pruning); else error('Pruning is not available for orders > 3'); end else if ReducedForm.use_k_order_solver tmp = local_state_space_iteration_k(yhat, epsilon, dr, M_, options_, udr); else if order == 2 tmp = local_state_space_iteration_2(yhat,epsilon,ghx,ghu,constant,ghxx,ghuu,ghxu,ThreadsOptions.local_state_space_iteration_2); elseif order == 3 tmp = local_state_space_iteration_3(yhat, epsilon, ghx, ghu, ghxx, ghuu, ghxu, ghs2, ghxxx, ghuuu, ghxxu, ghxuu, ghxss, ghuss, steadystate, ThreadsOptions.local_state_space_iteration_3, pruning); else error('Order > 3: use_k_order_solver should be set to true'); end end end %PredictedObservedMean = tmp(mf1,:)*transpose(weights); PredictionError = bsxfun(@minus,Y(:,t),tmp(mf1,:)); %dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean); %PredictedObservedVariance = bsxfun(@times,dPredictedObservedMean,weights)*dPredictedObservedMean' + H; %PredictedObservedVariance = H; if rcond(H) > 1e-16 lnw = -.5*(const_lik+sum(PredictionError.*(H\PredictionError),1)); else LIK = NaN; return end dfac = max(lnw); wtilde = weights.*exp(lnw-dfac); lik(t) = log(sum(wtilde))+dfac; weights = wtilde/sum(wtilde); if (ParticleOptions.resampling.status.generic && neff(weights)