function pdraw = prior_draw_gsa(M_,bayestopt_,options_,estim_params_,init,rdraw) % Draws from the prior distributions for use with Sensitivity Toolbox for DYNARE % % INPUTS % - M_ [structure] describing the model % - bayestopt_ [structure] describing the priors % - options_ [structure] describing the options % - estim_params_ [structure] characterizing parameters to be estimated % - init [integer] scalar equal to 1 (first call) or 0. % - rdraw % % OUTPUTS % o pdraw [double] draw from the joint prior density. % % ALGORITHM % ... % % SPECIAL REQUIREMENTS % MATLAB Statistics Toolbox % % Written by Marco Ratto % Joint Research Centre, The European Commission, % marco.ratto@ec.europa.eu % Copyright © 2012-2015 European Commission % Copyright © 2012-2017 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . persistent npar pshape p6 p7 p3 p4 lbcum ubcum if init pshape = bayestopt_.pshape; p6 = bayestopt_.p6; p7 = bayestopt_.p7; p3 = bayestopt_.p3; p4 = bayestopt_.p4; npar = length(p6); pdraw = zeros(npar,1); lbcum = zeros(npar,1); ubcum = ones(npar,1); [~,~,~,lb,ub] = set_prior(estim_params_,M_,options_); %Prepare bounds if ~isempty(bayestopt_) && any(bayestopt_.pshape > 0) % Set prior bounds bounds = prior_bounds(bayestopt_, options_.prior_trunc); bounds.lb = max(bounds.lb,lb); bounds.ub = min(bounds.ub,ub); else % estimated parameters but no declared priors % No priors are declared so Dynare will estimate the model by % maximum likelihood with inequality constraints for the parameters. bounds.lb = lb; bounds.ub = ub; end % set bounds for cumulative probabilities for i = 1:npar switch pshape(i) case 1% Beta distribution (TODO: generalized beta distribution) lbcum(i) = betainc((bounds.lb(i)-p3(i))./(p4(i)-p3(i)),p6(i),p7(i)); ubcum(i) = betainc((bounds.ub(i)-p3(i))./(p4(i)-p3(i)),p6(i),p7(i)); case 2% Gamma prior. lbcum(i) = gamcdf(bounds.lb(i)-p3(i),p6(i),p7(i)); ubcum(i) = gamcdf(bounds.ub(i)-p3(i),p6(i),p7(i)); case 3% Gaussian prior. lbcum(i) = 0.5 * erfc(-(bounds.lb(i)-p6(i))/p7(i) ./ sqrt(2)); ubcum(i) = 0.5 * erfc(-(bounds.ub(i)-p6(i))/p7(i) ./ sqrt(2)); case 4% INV-GAMMA1 distribution % TO BE CHECKED lbcum(i) = gamcdf(1/(bounds.ub(i)-p3(i))^2,p7(i)/2,2/p6(i)); ubcum(i) = gamcdf(1/(bounds.lb(i)-p3(i))^2,p7(i)/2,2/p6(i)); case 5% Uniform prior. p4(i) = min(p4(i),bounds.ub(i)); p3(i) = max(p3(i),bounds.lb(i)); case 6% INV-GAMMA2 distribution % TO BE CHECKED lbcum(i) = gamcdf(1/(bounds.ub(i)-p3(i)),p7(i)/2,2/p6(i)); ubcum(i) = gamcdf(1/(bounds.lb(i)-p3(i)),p7(i)/2,2/p6(i)); case 8 lbcum(i) = wblcdf(bounds.lb(i)-p3(i),p6(i),p7(i)); ubcum(i) = wblcdf(bounds.ub(i)-p3(i),p6(i),p7(i)); otherwise % Nothing to do here. end end return end pdraw=NaN(size(rdraw,1),npar); for i = 1:npar rdraw(:,i) = rdraw(:,i).*(ubcum(i)-lbcum(i))+lbcum(i); switch pshape(i) case 5% Uniform prior. pdraw(:,i) = rdraw(:,i)*(p4(i)-p3(i)) + p3(i); case 3% Gaussian prior. pdraw(:,i) = norminv(rdraw(:,i),p6(i),p7(i)); case 2% Gamma prior. pdraw(:,i) = gaminv(rdraw(:,i),p6(i),p7(i))+p3(i); case 1% Beta distribution (TODO: generalized beta distribution) pdraw(:,i) = betainv(rdraw(:,i),p6(i),p7(i))*(p4(i)-p3(i))+p3(i); case 4% INV-GAMMA1 distribution % TO BE CHECKED pdraw(:,i) = sqrt(1./gaminv(rdraw(:,i),p7(i)/2,2/p6(i)))+p3(i); case 6% INV-GAMMA2 distribution % TO BE CHECKED pdraw(:,i) = 1./gaminv(rdraw(:,i),p7(i)/2,2/p6(i))+p3(i); case 8 pdraw(:,i) = wblinv(rdraw(:,i),p6(i),p7(i))+p3(i); otherwise % Nothing to do here. end end