function [y,dy] = prodmom_deriv(V,ii,nu,dV,dC) % Computes the product moments (and its derivatives with respect to standard % errors and correlation parameters) of normally distributed variables, i.e. % this function computes the product moment of % X_{i_1}^{nu_1}X_{i_2}^{nu_2}...X_{i_m}^{nu_m}, where X_{i_j} are elements % from X ~ N(0_n,V) and V is positive semidefinite. % Example: To get E[X_2X_4^3X_7^2], use prodmom_deriv(V,[2 4 7],[1 3 2]) % ========================================================================= % INPUTS % V [n by n] covariance matrix of X (needs to be positive semidefinite) % ii [m by 1] vector of i_j % nu [nu_m by 1] power of X_{i_j} % dV [n by n by stderrparam_nbr+corrparam_nbr] derivative of V with respect % to selected standard error (stderr) % and correlation (corr) parameters % dC [n by n by stderrparam_nbr+corrparam_nbr] derivative of Correlation matrix C with respect % to selected standard error (stderr) % and correlation (corr) parameters % ------------------------------------------------------------------------- % OUTPUTS % y [1 by 1] product moment E[X_{i_1}^{nu_1}X_{i_2}^{nu_2}...X_{i_m}^{nu_m}] % dy [1 by stderrparam_nbr+corrparam_nbr] derivatives of y wrt to selected % standard error and corr parameters % ------------------------------------------------------------------------- % This function is based upon prodmom.m which is part of replication codes % of the following paper: % Kan, R.: "From moments of sum to moments of product." Journal of % Multivariate Analysis, 2008, vol. 99, issue 3, pages 542-554. % prodmom.m can be retrieved from http://www-2.rotman.utoronto.ca/~kan/papers/prodmom.zip % Further references: % Triantafyllopoulos (2003) On the Central Moments of the Multidimensional % Gaussian Distribution, Mathematical Scientist % Kotz, Balakrishnan, and Johnson (2000), Continuous Multivariate % Distributions, Vol. 1, p.261 % ========================================================================= % Copyright © 2008-2015 Raymond Kan % Copyright © 2019-2020 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . % ========================================================================= if nargin<3 nu = ones(size(ii)); end s = sum(nu); if s==0 y = 1; if nargout > 1 dy = zeros(1,1,size(dV,3)); end return end if rem(s,2)==1 y = 0; if nargout > 1 dy = zeros(1,1,size(dV,3)); end return end nuz = nu==0; nu(nuz) = []; ii(nuz) = []; m = length(ii); V = V(ii,ii); if nargout > 1 dV = dV(ii,ii,:); end s2 = s/2; % % Use univariate normal results % if m==1 y = V^s2*prod([1:2:s-1]); if nargout > 1 dy = s2*V^(s2-1)*dV*prod([1:2:s-1]); dy = reshape(dy,1,size(dV,3)); end return end % % Use bivariate normal results when there are only two distinct indices % if m==2 if V(1,1)==0 || V(2,2)==0 y=0; if nargout>1 dy=zeros(1,size(dV,3)); end return end rho = V(1,2)/sqrt(V(1,1)*V(2,2)); if nargout > 1 drho = dC(ii(1),ii(2),:); [tmp,dtmp] = pruned_SS.bivmom(nu,rho); dy = (nu(1)/2)*V(1,1)^(nu(1)/2-1)*dV(1,1,:) * V(2,2)^(nu(2)/2) * tmp... + V(1,1)^(nu(1)/2) * (nu(2)/2)*V(2,2)^(nu(2)/2-1)*dV(2,2,:) * tmp... + V(1,1)^(nu(1)/2) * V(2,2)^(nu(2)/2) * dtmp * drho; dy = reshape(dy,1,size(dV,3)); else tmp = pruned_SS.bivmom(nu,rho); end y = V(1,1)^(nu(1)/2)*V(2,2)^(nu(2)/2)*tmp; return end % % Regular case % [nu,inu] = sort(nu,2,'descend'); V = V(inu,inu); % Extract only the relevant part of V x = zeros(1,m); V = V./2; nu2 = nu./2; p = 2; q = nu2*V*nu2'; y = 0; if nargout > 1 dV = dV(inu,inu,:); % Extract only the relevant part of dV dV = dV./2; %dq = nu2*dV*nu2'; %dq = multiprod(multiprod(nu2,dV),nu2'); dq = NaN(size(q,1), size(q,2), size(dV,3)); for jp = 1:size(dV,3) dq(:,:,jp) = nu2*dV(:,:,jp)*nu2'; end dy = 0; end for i=1:fix(prod(nu+1)/2) y = y+p*q^s2; if nargout > 1 dy = dy+p*s2*q^(s2-1)*dq; end for j=1:m if x(j) 1 %dq = dq-2*(nu2-x)*dV(:,j,:)-dV(j,j,:); %dq = dq-2*multiprod((nu2-x),dV(:,j,:))-dV(j,j,:); for jp=1:size(dV,3) dq(:,:,jp) = dq(:,:,jp)-2*(nu2-x)*dV(:,j,jp)-dV(j,j,jp); end end break else x(j) = 0; if rem(nu(j),2)==1 p = -p; end if nargout > 1 %dq = dq+2*nu(j)*multiprod((nu2-x),dV(:,j,:))-nu(j)^2*dV(j,j,:); for jp=1:size(dV,3) dq(:,:,jp) = dq(:,:,jp)+2*nu(j)*(nu2-x)*dV(:,j,jp)-nu(j)^2*dV(j,j,jp); end end q = q+2*nu(j)*(nu2-x)*V(:,j)-nu(j)^2*V(j,j); end end end y = y/prod([1:s2]); if nargout > 1 dy = dy/prod([1:s2]); dy = reshape(dy,1,size(dV,3)); end