function oo_=disp_moments(y,var_list,M_,options_,oo_) % function disp_moments(y,var_list,M_,options_,oo_) % Displays moments of simulated variables % INPUTS % y [double] nvar*nperiods vector of simulated variables. % var_list [char] nvar character array with names of variables. % M_ [structure] Dynare's model structure % oo_ [structure] Dynare's results structure % options_ [structure] Dynare's options structure % % OUTPUTS % oo_ [structure] Dynare's results structure, % Copyright © 2001-2021 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . warning_old_state = warning; warning off if isempty(var_list) var_list = M_.endo_names(1:M_.orig_endo_nbr); end nvar = length(var_list); ivar=zeros(nvar,1); for i=1:nvar i_tmp = strmatch(var_list{i}, M_.endo_names, 'exact'); if isempty(i_tmp) error('The variable %s specified is not an endogenous variable',var_list{i}); else ivar(i) = i_tmp; end end y = y(ivar,options_.drop+1:end)'; ME_present=0; if ~all(M_.H==0) [observable_pos_requested_vars, index_subset, index_observables] = intersect(ivar, options_.varobs_id, 'stable'); if ~isempty(observable_pos_requested_vars) ME_present=1; i_ME = setdiff([1:size(M_.H,1)],find(diag(M_.H) == 0)); % find ME with 0 variance chol_S = chol(M_.H(i_ME,i_ME)); %decompose rest shock_mat=zeros(options_.periods,size(M_.H,1)); %initialize shock_mat(:,i_ME)=randn(length(i_ME),options_.periods)'*chol_S; y_ME = y(:,index_subset)+shock_mat(options_.drop+1:end,index_observables); y_ME_only = shock_mat(options_.drop+1:end,index_observables); m_ME = mean(y_ME); y_ME=get_filtered_time_series(y_ME,m_ME,options_); y_ME_only_filtered=get_filtered_time_series(y_ME_only,mean(y_ME_only),options_); s2_ME = mean(y_ME.*y_ME); s_ME = sqrt(s2_ME); zero_variance_ME_var_index=index_subset(abs(s_ME') 0 autocorr = []; for i=1:ar oo_.autocorr{i} = y(ar+1:end,:)'*y(ar+1-i:end-i,:)./((size(y,1)-ar)*std(y(ar+1:end,:))'*std(y(ar+1-i:end-i,:))); oo_.autocorr{i}(zero_variance_var_index,:)=NaN; oo_.autocorr{i}(:,zero_variance_var_index)=NaN; autocorr = [ autocorr diag(oo_.autocorr{i}) ]; end if ~options_.noprint title = 'AUTOCORRELATION OF SIMULATED VARIABLES'; title=add_filter_subtitle(title,options_); headers = vertcat('VARIABLE', cellstr(int2str([1:ar]'))); dyntable(options_, title, headers, labels, autocorr, cellofchararraymaxlength(labels)+2, 8, 4); if options_.TeX headers = vertcat('VARIABLE', cellstr(int2str([1:ar]'))); lh = cellofchararraymaxlength(labels)+2; dyn_latex_table(M_, options_, title, 'sim_autocorr_matrix', headers, labels_TeX, autocorr, cellofchararraymaxlength(labels_TeX)+2, 8, 4); end end end if ~options_.nodecomposition if M_.exo_nbr == 1 oo_.variance_decomposition = 100*ones(nvar,1); else oo_.variance_decomposition=zeros(nvar,M_.exo_nbr); %get starting values if isempty(M_.endo_histval) y0 = oo_.dr.ys; else if options_.loglinear y0 = log_variable(1:M_.endo_nbr,M_.endo_histval,M_); else y0 = M_.endo_histval; end end %back out shock matrix used for generating y i_exo_var = setdiff([1:M_.exo_nbr],find(diag(M_.Sigma_e) == 0)); % find shocks with 0 variance chol_S = chol(M_.Sigma_e(i_exo_var,i_exo_var)); %decompose rest shock_mat=zeros(options_.periods,M_.exo_nbr); %initialize shock_mat(:,i_exo_var)=oo_.exo_simul(:,i_exo_var)/chol_S; %invert construction of oo_.exo_simul from simult.m for shock_iter=1:length(i_exo_var) temp_shock_mat=zeros(size(shock_mat)); temp_shock_mat(:,i_exo_var(shock_iter))=shock_mat(:,i_exo_var(shock_iter)); temp_shock_mat(:,i_exo_var) = temp_shock_mat(:,i_exo_var)*chol_S; y_sim_one_shock = simult_(M_,options_,y0,oo_.dr,temp_shock_mat,options_.order); y_sim_one_shock=y_sim_one_shock(ivar,1+options_.drop+1:end)'; y_sim_one_shock=get_filtered_time_series(y_sim_one_shock,mean(y_sim_one_shock),options_); oo_.variance_decomposition(:,i_exo_var(shock_iter))=var(y_sim_one_shock)./s2*100; end oo_.variance_decomposition(zero_variance_var_index,:)=NaN; if ME_present oo_.variance_decomposition_ME=oo_.variance_decomposition(index_subset,:)... .*repmat((s2(index_subset)./s2_ME)',1,length(i_exo_var)); oo_.variance_decomposition_ME(:,end+1)=var(y_ME_only_filtered)./s2_ME*100; oo_.variance_decomposition_ME(ismember(observable_pos_requested_vars,intersect(zero_variance_ME_var_index,zero_variance_var_index)),:)=NaN; oo_.variance_decomposition_ME(ismember(observable_pos_requested_vars,setdiff(zero_variance_var_index,zero_variance_ME_var_index)),1:end-1)=0; oo_.variance_decomposition_ME(ismember(observable_pos_requested_vars,setdiff(zero_variance_var_index,zero_variance_ME_var_index)),end)=1; end if ~options_.noprint %options_.nomoments == 0 skipline() title='VARIANCE DECOMPOSITION SIMULATING ONE SHOCK AT A TIME (in percent)'; title=add_filter_subtitle(title,options_); headers = M_.exo_names; headers(M_.exo_names_orig_ord) = headers; headers = vertcat(' ', headers); lh = cellofchararraymaxlength(M_.endo_names(ivar))+2; dyntable(options_, title, vertcat(headers, 'Tot. lin. contr.'), ... labels, [oo_.variance_decomposition sum(oo_.variance_decomposition,2)], lh, 8, 2); if ME_present headers_ME = vertcat(headers, 'ME'); labels_obs=get_labels_transformed_vars(M_.endo_names,ivar(index_subset),options_,false); dyntable(options_, [title,' WITH MEASUREMENT ERROR'], vertcat(headers_ME, 'Tot. lin. contr.'), labels_obs, ... [oo_.variance_decomposition_ME sum(oo_.variance_decomposition_ME, 2)], lh, 8, 2); end if options_.TeX headers = M_.exo_names_tex; headers = vertcat(' ', headers); labels = M_.endo_names_tex(ivar); lh = cellofchararraymaxlength(labels)+2; dyn_latex_table(M_, options_, title, 'sim_var_decomp', vertcat(headers, 'Tot. lin. contr.'), ... labels_TeX, [oo_.variance_decomposition sum(oo_.variance_decomposition, 2)], lh, 8, 2); if ME_present headers_ME = vertcat(headers, 'ME'); labels_obs_TeX=get_labels_transformed_vars(M_.endo_names_tex,ivar(index_subset),options_,true); dyn_latex_table(M_, options_, [title, ' WITH MEASUREMENT ERROR'], 'sim_var_decomp_ME', ... vertcat(headers_ME, 'Tot. lin. contr.'), ... labels_obs_TeX, ... [oo_.variance_decomposition_ME sum(oo_.variance_decomposition_ME, 2)], lh, 8, 2); end end if options_.order == 1 fprintf('Note: numbers do not add up to 100 due to non-zero correlation of simulated shocks in small samples\n\n') else fprintf('Note: numbers do not add up to 100 due to i) non-zero correlation of simulated shocks in small samples and ii) nonlinearity\n\n') end end end end warning(warning_old_state); end function y = get_filtered_time_series(y, m, options_) if options_.hp_filter && ~options_.one_sided_hp_filter && ~options_.bandpass.indicator [hptrend,y] = sample_hp_filter(y,options_.hp_filter); elseif ~options_.hp_filter && options_.one_sided_hp_filter && ~options_.bandpass.indicator [hptrend,y] = one_sided_hp_filter(y,options_.one_sided_hp_filter); elseif ~options_.hp_filter && ~options_.one_sided_hp_filter && options_.bandpass.indicator data_temp=dseries(y,'0q1'); data_temp=baxter_king_filter(data_temp,options_.bandpass.passband(1),options_.bandpass.passband(2),options_.bandpass.K); y=data_temp.data; elseif ~options_.hp_filter && ~options_.one_sided_hp_filter && ~options_.bandpass.indicator y = bsxfun(@minus, y, m); else error('disp_moments:: You cannot use more than one filter at the same time') end end