@#define extended_path_version = 1 var Capital, Output, Labour, Consumption, Efficiency, efficiency, ExpectedTerm, LagrangeMultiplier; varexo EfficiencyInnovation; parameters beta, theta, tau, alpha, psi, delta, rho, effstar, sigma2; /* ** Calibration */ beta = 0.990; theta = 0.357; tau = 2.000; alpha = 0.450; psi = -0.500; delta = 0.020; rho = 0.995; effstar = 1.000; sigma2 = 0.001; @#if extended_path_version rho = 0.800; @#endif external_function(name=mean_preserving_spread); model(block,bytecode,cutoff=0); // Eq. n°1: efficiency = rho*efficiency(-1) + EfficiencyInnovation; // Eq. n°2: Efficiency = effstar*exp(efficiency-mean_preserving_spread(rho)); // Eq. n°3: Output = Efficiency*(alpha*(Capital(-1)^psi)+(1-alpha)*(Labour^psi))^(1/psi); // Eq. n°4: Capital = max(Output-Consumption + (1-delta)*Capital(-1),(1-delta)*Capital(-1)); // Eq. n°5: ((1-theta)/theta)*(Consumption/(1-Labour)) - (1-alpha)*(Output/Labour)^(1-psi); // Eq. n°6: (((Consumption^theta)*((1-Labour)^(1-theta)))^(1-tau))/Consumption - LagrangeMultiplier - ExpectedTerm(1); // Eq. n°7: (Capital==(1-delta)*Capital(-1))*(Output-Consumption) + (1-(Capital==(1-delta)*Capital(-1)))*LagrangeMultiplier = 0; // Eq. n°8: ExpectedTerm = beta*(((((Consumption^theta)*((1-Labour)^(1-theta)))^(1-tau))/Consumption)*(alpha*((Output/Capital(-1))^(1-psi))+(1-delta))-(1-delta)*LagrangeMultiplier); end; @#if extended_path_version shocks; var EfficiencyInnovation = sigma2; end; steady; options_.maxit_ = 100; options_.ep.verbosity = 0; options_.ep.stochastic.status = 0; options_.console_mode = 0; ts = extended_path([],1000); options_.ep.stochastic.status = 1; sts = extended_path([],1000); figure(1) plot(ts(2,:)-ts(4,:)); figure(2) plot(sts(2,:)-sts(4,:)); figure(3) plot(sts(2,:)-ts(2,:)) @#else shocks; var EfficiencyInnovation; periods 1; values -.4; end; steady; options_.maxit_ = 100; simul(periods=4000); n = 100; plot(Output(1:n)-Consumption(1:n),'-b','linewidth',2) @#endif