function [raftery_lewis] = raftery_lewis(runs,q,r,s) % function raftery_lewis = raftery_lewis(runs,q,r,s) % Computes the convergence diagnostics of Raftery and Lewis (1992), i.e. the % number of draws needed in MCMC to estimate the posterior cdf of the q-quantile % within an accuracy r with probability s % % Inputs: % - draws [n_draws by n_var] double matrix of draws from the sampler % - q [scalar] quantile of the quantity of interest % - r [scalar] level of desired precision % - s [scalar] probability associated with r % % Output: % raftery_lewis [structure] containing the fields: % - M_burn [n_draws by 1] number of draws required for burn-in % - N_prec [n_draws by 1] number of draws required to achieve desired precision r % - k_thin [n_draws by 1] thinning required to get 1st order MC % - k_ind [n_draws by 1] thinning required to get independence % - I_stat [n_draws by 1] I-statistic of Raftery/Lewis (1992b) % measures increase in required % iterations due to dependence in chain % - N_min [scalar] # draws if the chain is white noise % - N_total [n_draws by 1] nburn + nprec % % --------------------------------------------------------------------- % NOTES: Example values of q, r, s: % 0.025, 0.005, 0.95 (for a long-tailed distribution) % 0.025, 0.0125, 0.95 (for a short-tailed distribution); % % - The result is quite sensitive to r, being proportional to the % inverse of r^2. % - For epsilon (closeness of probabilities to equilibrium values), % Raftery/Lewis use 0.001 and argue that the results % are quite robust to changes in this value % % --------------------------------------------------------------------- % REFERENCES: % Raftery, Adrien E./Lewis, Steven (1992a): "How many iterations in the Gibbs sampler?" % in: Bernardo/Berger/Dawid/Smith (eds.): Bayesian Statistics, Vol. 4, Clarendon Press: Oxford, % pp. 763-773. % Raftery, Adrien E./Lewis, Steven (1992b): "Comment: One long run with diagnostics: % Implementation strategies for Markov chain Monte Carlo." Statistical Science, % 7(4), pp. 493-497. % % ---------------------------------------------------- % Copyright (C) 2016 Benjamin Born and Johannes Pfeifer % Copyright (C) 2016 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . [n_runs, n_vars] = size(runs); raftery_lewis.M_burn=NaN(n_vars,1); raftery_lewis.N_prec=NaN(n_vars,1); raftery_lewis.k_thin=NaN(n_vars,1); raftery_lewis.k_ind=NaN(n_vars,1); raftery_lewis.I_stat=NaN(n_vars,1); raftery_lewis.N_total=NaN(n_vars,1); thinned_chain = zeros(n_runs,1); %quantities that can be precomputed as they are independent of variable Phi = norminv((s+1)/2); %note the missing ^{-1} at the Phi in equation top page 5, see RL (1995) raftery_lewis.N_min = fix(Phi^2*(1-q)*q/r^2+1); for nv = 1:n_vars % big loop over variables if q > 0 && q < 1 work = (runs(:,nv) <= quantile(runs(:,nv),q)); else error('Quantile must be between 0 and 1'); end; k_thin_current_var = 1; bic = 1; epss = 0.001; % Find thinning factor for which first-order Markov Chain is preferred to second-order one while(bic > 0) thinned_chain=work(1:k_thin_current_var:n_runs,1); [g2, bic] = first_vs_second_order_MC_test(thinned_chain); k_thin_current_var = k_thin_current_var+1; end; k_thin_current_var = k_thin_current_var-1; %undo last step %compute transition probabilities transition_matrix = zeros(2,2); for i1 = 2:size(thinned_chain,1) transition_matrix(thinned_chain(i1-1)+1,thinned_chain(i1)+1) = transition_matrix(thinned_chain(i1-1)+1,thinned_chain(i1)+1)+1; end; alpha = transition_matrix(1,2)/(transition_matrix(1,1)+transition_matrix(1,2)); %prob of going from 1 to 2 beta = transition_matrix(2,1)/(transition_matrix(2,1)+transition_matrix(2,2)); %prob of going from 2 to 1 kmind=k_thin_current_var; [g2, bic]=independence_chain_test(thinned_chain); while(bic > 0) thinned_chain=work(1:kmind:n_runs,1); [g2, bic] = independence_chain_test(thinned_chain); kmind = kmind+1; end; m_star = log((alpha + beta)*epss/max(alpha,beta))/log(abs(1 - alpha - beta)); %equation bottom page 4 raftery_lewis.M_burn(nv) = fix((m_star+1)*k_thin_current_var); n_star = (2 - (alpha + beta))*alpha*beta*(Phi^2)/((alpha + beta)^3 * r^2); %equation top page 5 raftery_lewis.N_prec(nv) = fix(n_star+1)*k_thin_current_var; raftery_lewis.I_stat(nv) = (raftery_lewis.M_burn(nv) + raftery_lewis.N_prec(nv))/raftery_lewis.N_min; raftery_lewis.k_ind(nv) = max(fix(raftery_lewis.I_stat(nv)+1),kmind); raftery_lewis.k_thin(nv) = k_thin_current_var; raftery_lewis.N_total(nv)= raftery_lewis.M_burn(nv)+raftery_lewis.N_prec(nv); end; end function [g2, bic] = first_vs_second_order_MC_test(d) %conducts a test of first vs. second order Markov Chain via BIC criterion n_obs=size(d,1); g2 = 0; tran=zeros(2,2,2); for t_iter=3:n_obs % count state transitions tran(d(t_iter-2,1)+1,d(t_iter-1,1)+1,d(t_iter,1)+1)=tran(d(t_iter-2,1)+1,d(t_iter-1,1)+1,d(t_iter,1)+1)+1; end; % Compute the log likelihood ratio statistic for second-order MC vs first-order MC. G2 statistic of Bishop, Fienberg and Holland (1975) for ind_1 = 1:2 for ind_2 = 1:2 for ind_3 = 1:2 if tran(ind_1,ind_2,ind_3) ~= 0 fitted = (tran(ind_1,ind_2,1) + tran(ind_1,ind_2,2))*(tran(1,ind_2,ind_3) + tran(2,ind_2,ind_3))/... (tran(1,ind_2,1) + tran(1,ind_2,2) + tran(2,ind_2,1) + tran(2,ind_2,2)); focus = tran(ind_1,ind_2,ind_3); g2 = g2 + log(focus/fitted)*focus; end end; % end of for i3 end; % end of for i2 end; % end of for i1 g2 = g2*2; bic = g2 - log(n_obs-2)*2; end function [g2, bic] = independence_chain_test(d) %conducts a test of independence Chain via BIC criterion n_obs=size(d,1); trans = zeros(2,2); for ind_1 = 2:n_obs trans(d(ind_1-1)+1,d(ind_1)+1)=trans(d(ind_1-1)+1,d(ind_1)+1)+1; end; dcm1 = n_obs - 1; g2 = 0; % Compute the log likelihood ratio statistic for second-order MC vs first-order MC. G2 statistic of Bishop, Fienberg and Holland (1975) for ind_1 = 1:2 for ind_2 = 1:2 if trans(ind_1,ind_2) ~= 0 fitted = ((trans(ind_1,1) + trans(ind_1,2))*(trans(1,ind_2) + trans(2,ind_2)))/dcm1; focus = trans(ind_1,ind_2); g2 = g2 + log(focus/fitted)*focus; end; end; end; g2 = g2*2; bic = g2 - log(dcm1); end