function planner_objective_value = evaluate_planner_objective(M_,options_,oo_) % OUTPUT % Returns a vector containing first order or second-order approximations of % - the unconditional expectation of the planner's objective function % - the conditional expectation of the planner's objective function starting from the non-stochastic steady state and allowing for future shocks % depending on the value of options_.order. % ALGORITHM % Welfare verifies % W(y_{t-1}, u_t, sigma) = U(h(y_{t-1}, u_t, sigma)) + beta E_t W(g(y_{t-1}, u_t, sigma), u_t, sigma) % where % - W is the welfare function % - U is the utility function % - y_{t-1} is the vector of state variables % - u_t is the vector of exogenous shocks scaled with sigma i.e. u_t = sigma e_t where e_t is the vector of exogenous shocks % - sigma is the perturbation parameter % - h is the policy function, providing controls x_t in function of information at time t i.e. (y_{t-1}, u_t, sigma) % - g is the transition function, providing next-period state variables in function of information at time t i.e. (y_{t-1}, u_t, sigma) % - beta is the planner's discount factor % - E_t is the expectation operator given information at time t i.e. (y_{t-1}, u_t, sigma) % The unconditional expectation of the planner's objective function verifies % E(W) = E(U)/(1-beta) % The conditional expectation of the planner's objective function given (y_{t-1}, u_t, sigma) coincides with the welfare function delineated above. % A first-order approximation of the utility function around the non-stochastic steady state (y_{t-1}, u_t, sigma) = (y, 0, 0) is % U(h(y_{t-1}, u_t, sigma)) = Ubar + U_x ( h_y yhat_{t-1} + h_u u_t ) % Taking the unconditional expectation yields E(U) = Ubar and E(W) = Ubar/(1-beta) % As for conditional welfare, a first-order approximation leads to % W = Wbar + W_y yhat_{t-1} + W_u u_t % The approximated conditional expectation of the planner's objective function taking at the non-stochastic steady-state and allowing for future shocks thus verifies % W (y, 0, 1) = Wbar % Similarly, taking the unconditional expectation of a second-order approximation of utility around the non-stochastic steady state yields a second-order approximation of unconditional welfare % E(W) = (1 - beta)^{-1} ( Ubar + U_x h_y E(yhat) + 0.5 ( (U_xx h_y^2 + U_x h_yy) E(yhat^2) + (U_xx h_u^2 + U_x h_uu) E(u^2) + U_x h_ss ) % where E(yhat), E(yhat^2) and E(u^2) can be derived from oo_.mean and oo_.var % As for conditional welfare, the second-order approximation of welfare around the non-stochastic steady state leads to % W(y_{t-1}, u_t, sigma) = Wbar + W_y yhat_{t-1} + W_u u_t + W_yu yhat_{t-1} ⊗ u_t + 0.5 ( W_yy yhat_{t-1}^2 + W_uu u_t^2 + W_ss ) % The derivatives of W taken at the non-stochastic steady state can be computed as in Kamenik and Juillard (2004) "Solving Stochastic Dynamic Equilibrium Models: A k-Order Perturbation Approach". % The approximated conditional expectation of the planner's objective function starting from the non-stochastic steady-state and allowing for future shocks thus verifies % W(y,0,1) = Wbar + 0.5*Wss % In the discretionary case, the model is assumed to be linear and the utility is assumed to be linear-quadratic. This changes 2 aspects of the results delinated above: % 1) the second-order derivatives of the policy and transition functions h and g are zero. % 2) the unconditional expectation of states coincides with its steady-state, which entails E(yhat) = 0 % Therefore, the unconditional welfare can now be approximated as % E(W) = (1 - beta)^{-1} ( Ubar + 0.5 ( U_xx h_y^2 E(yhat^2) + U_xx h_u^2 E(u^2) ) % As for the conditional welfare, the second-order formula above is still valid, but the derivatives of W no longer contain any second-order derivatives of the policy and transition functions h and g. % In the deterministic case, resorting to approximations for welfare is no longer required as it is possible to simulate the model given initial conditions for pre-determined variables and terminal conditions for forward-looking variables, whether these initial and terminal conditions are explicitly or implicitly specified. Assuming that the number of simulated periods is high enough for the new steady-state to be reached, the new unconditional welfare is thus the last period's welfare. As for the conditional welfare, it can be derived using backward recursions on the equation W = U + beta*W(+1) starting from the final unconditional steady-state welfare. % INPUTS % M_: (structure) model description % options_: (structure) options % oo_: (structure) output results % % SPECIAL REQUIREMENTS % none % Copyright (C) 2007-2021 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . dr = oo_.dr; exo_nbr = M_.exo_nbr; nstatic = M_.nstatic; nspred = M_.nspred; beta = get_optimal_policy_discount_factor(M_.params, M_.param_names); planner_objective_value = zeros(2,1); if options_.ramsey_policy if oo_.gui.ran_perfect_foresight T = size(oo_.endo_simul,2); [U_term] = feval([M_.fname '.objective.static'],oo_.endo_simul(:,T),oo_.exo_simul(T,:), M_.params); EW = U_term/(1-beta); W = EW; for t=T:-1:2 [U] = feval([M_.fname '.objective.static'],oo_.endo_simul(:,t),oo_.exo_simul(t,:), M_.params); W = U + beta*W; end planner_objective_value(1) = EW; planner_objective_value(2) = W; else ys = oo_.dr.ys; if options_.order == 1 || M_.hessian_eq_zero [U] = feval([M_.fname '.objective.static'],ys,zeros(1,exo_nbr), M_.params); planner_objective_value(1) = U/(1-beta); planner_objective_value(2) = U/(1-beta); elseif options_.order == 2 && ~M_.hessian_eq_zero [U,Uy,Uyy] = feval([M_.fname '.objective.static'],ys,zeros(1,exo_nbr), M_.params); Gy = dr.ghx(nstatic+(1:nspred),:); Gu = dr.ghu(nstatic+(1:nspred),:); Gyy = dr.ghxx(nstatic+(1:nspred),:); Gyu = dr.ghxu(nstatic+(1:nspred),:); Guu = dr.ghuu(nstatic+(1:nspred),:); Gss = dr.ghs2(nstatic+(1:nspred),:); gy(dr.order_var,:) = dr.ghx; gu(dr.order_var,:) = dr.ghu; gyy(dr.order_var,:) = dr.ghxx; gyu(dr.order_var,:) = dr.ghxu; guu(dr.order_var,:) = dr.ghuu; gss(dr.order_var,:) = dr.ghs2; Uyy = full(Uyy); Uyygygy = A_times_B_kronecker_C(Uyy,gy,gy); Uyygugu = A_times_B_kronecker_C(Uyy,gu,gu); %% Unconditional welfare old_noprint = options_.noprint; if ~old_noprint options_.noprint = 1; end var_list = M_.endo_names(dr.order_var(nstatic+(1:nspred))); [info, oo_, options_] = stoch_simul(M_, options_, oo_, var_list); %get decision rules and moments if ~old_noprint options_.noprint = 0; end oo_.mean(isnan(oo_.mean)) = options_.huge_number; oo_.var(isnan(oo_.var)) = options_.huge_number; Ey = oo_.mean; Eyhat = Ey - ys(dr.order_var(nstatic+(1:nspred))); var_corr = Eyhat*Eyhat'; Eyhatyhat = oo_.var(:) + var_corr(:); Euu = M_.Sigma_e(:); EU = U + Uy*gy*Eyhat + 0.5*((Uyygygy + Uy*gyy)*Eyhatyhat + (Uyygugu + Uy*guu)*Euu + Uy*gss); EW = EU/(1-beta); %% Conditional welfare starting from the non-stochastic steady-state Wbar = U/(1-beta); Wy = Uy*gy/(eye(nspred)-beta*Gy); if isempty(options_.qz_criterium) options_.qz_criterium = 1+1e-6; end %solve Lyapunuv equation Wyy=gy'*Uyy*gy+Uy*gyy+beta*Wy*Gyy+beta*Gy'Wyy*Gy Wyy = reshape(lyapunov_symm(sqrt(beta)*Gy',reshape(Uyygygy + Uy*gyy + beta*Wy*Gyy,nspred,nspred),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, 3, options_.debug),1,nspred*nspred); Wyygugu = A_times_B_kronecker_C(Wyy,Gu,Gu); Wuu = Uyygugu + Uy*guu + beta*(Wyygugu + Wy*Guu); Wss = (Uy*gss + beta*(Wy*Gss + Wuu*M_.Sigma_e(:)))/(1-beta); W = Wbar + 0.5*Wss; planner_objective_value(1) = EW; planner_objective_value(2) = W; else %Order k code will go here! fprintf('\nevaluate_planner_objective: order>2 not yet supported\n') planner_objective_value(1) = NaN; planner_objective_value(2) = NaN; return end end elseif options_.discretionary_policy ys = oo_.dr.ys; [U,Uy,Uyy] = feval([M_.fname '.objective.static'],ys,zeros(1,exo_nbr), M_.params); Gy = dr.ghx(nstatic+(1:nspred),:); Gu = dr.ghu(nstatic+(1:nspred),:); gy(dr.order_var,:) = dr.ghx; gu(dr.order_var,:) = dr.ghu; Uyy = full(Uyy); Uyygygy = A_times_B_kronecker_C(Uyy,gy,gy); Uyygugu = A_times_B_kronecker_C(Uyy,gu,gu); %% Unconditional welfare old_noprint = options_.noprint; if ~old_noprint options_.noprint = 1; end var_list = M_.endo_names(dr.order_var(nstatic+(1:nspred))); [info, oo_, options_] = stoch_simul(M_, options_, oo_, var_list); %get decision rules and moments if ~old_noprint options_.noprint = 0; end oo_.mean(isnan(oo_.mean)) = options_.huge_number; oo_.var(isnan(oo_.var)) = options_.huge_number; Ey = oo_.mean; Eyhat = Ey - ys(dr.order_var(nstatic+(1:nspred))); var_corr = Eyhat*Eyhat'; Eyhatyhat = oo_.var(:) + var_corr(:); Euu = M_.Sigma_e(:); EU = U + Uy*gy*Eyhat + 0.5*(Uyygygy*Eyhatyhat + Uyygugu*Euu); EW = EU/(1-beta); %% Conditional welfare starting from the non-stochastic steady-state Wbar = U/(1-beta); Wy = Uy*gy/(eye(nspred)-beta*Gy); if isempty(options_.qz_criterium) options_.qz_criterium = 1+1e-6; end %solve Lyapunuv equation Wyy=gy'*Uyy*gy+beta*Gy'Wyy*Gy Wyy = reshape(lyapunov_symm(sqrt(beta)*Gy',reshape(Uyygygy,nspred,nspred),options_.lyapunov_fixed_point_tol,options_.qz_criterium,options_.lyapunov_complex_threshold, 3, options_.debug),1,nspred*nspred); Wyygugu = A_times_B_kronecker_C(Wyy,Gu,Gu); Wuu = Uyygugu + beta*Wyygugu; Wss = beta*Wuu*M_.Sigma_e(:)/(1-beta); W = Wbar + 0.5*Wss; planner_objective_value(1) = EW; planner_objective_value(2) = W; end if ~options_.noprint if options_.ramsey_policy if oo_.gui.ran_perfect_foresight fprintf('\nSimulated value of unconditional welfare: %10.8f\n', planner_objective_value(1)) fprintf('\nSimulated value of conditional welfare: %10.8f\n', planner_objective_value(2)) else fprintf('\nApproximated value of unconditional welfare: %10.8f\n', planner_objective_value(1)) fprintf('\nApproximated value of conditional welfare: %10.8f\n', planner_objective_value(2)) end elseif options_.discretionary_policy fprintf('\nApproximated value of unconditional welfare with discretionary policy: %10.8f\n', planner_objective_value(1)) fprintf('\nApproximated value of conditional welfare with discretionary policy: %10.8f\n', planner_objective_value(2)) end end