! Copyright © 2022-2023 Dynare Team ! ! This file is part of Dynare. ! ! Dynare is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! Dynare is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with Dynare. If not, see . ! Routines and data structures for multithreading over particles in local_state_space_iteration_3 module pparticle_3 use matlab_mex use partitions implicit none (type, external) type tdata_3 integer :: n, m, s, q, numthreads, xx_size, uu_size, xxx_size, uuu_size real(real64), pointer, contiguous :: e(:,:), ghx(:,:), ghu(:,:), & &ghxu(:,:), ghxx(:,:), ghuu(:,:), ghs2(:), & &ghxxx(:,:), ghuuu(:,:), ghxxu(:,:), ghxuu(:,:), ghxss(:,:), ghuss(:,:), & &ss(:), y3(:,:) real(real64), pointer :: yhat3(:,:), yhat2(:,:), yhat1(:,:), ylat3(:,:), & &ylat2(:,:), ylat1(:,:) type(index), pointer, contiguous :: xx_idcs(:), uu_idcs(:), & &xxx_idcs(:), uuu_idcs(:) integer, pointer, contiguous :: xx_nbeq(:) end type tdata_3 type(tdata_3) :: td3 contains ! Fills y3 as y3 = ybar + ½ghss + ghx·ŷ+ghu·ε + ½ghxx·ŷ⊗ŷ + ½ghuu·ε⊗ε + ! ghxu·ŷ⊗ε + (1/6)·ghxxx ŷ⊗ŷ⊗ŷ + (1/6)·ghuuu·ε⊗ε⊗ε + ! (3/6)·ghxxu·ŷ⊗ŷ⊗ε + (3/6)·ghxuu·ŷ⊗ε⊗ε + ! (3/6)·ghxss·ŷ + (3/6)·ghuss·ε ! in td3 subroutine thread_eval_3(arg) bind(c) type(c_ptr), intent(in), value :: arg integer, pointer :: ithread integer :: is, im, j, k, start, end, q, r ! Checking that the thread number got passed as argument if (.not. c_associated(arg)) then call mexErrMsgTxt("No argument was passed to thread_eval_3") end if call c_f_pointer(arg, ithread) ! Specifying bounds for the curent thread q = td3%s / td3%numthreads r = mod(td3%s, td3%numthreads) start = (ithread-1)*q+1 if (ithread < td3%numthreads) then end = start+q-1 else end = td3%s end if do is=start,end do im=1,td3%m ! y3 = ybar + ½ghss td3%y3(im,is) = td3%ss(im)+0.5_real64*td3%ghs2(im) ! y3 += ghx·ŷ+(3/6)·ghxss·ŷ + first n folded indices for ½ghxx·ŷ⊗ŷ ! + first n folded indices for (1/6)ghxxx·ŷ⊗ŷ⊗ŷ do j=1,td3%n td3%y3(im,is) = td3%y3(im,is)+& &(0.5_real64*td3%ghxss(j,im)+td3%ghx(j,im))*td3%yhat3(j,is)+& &(0.5_real64*td3%ghxx(j,im)+(1._real64/6._real64)*td3%ghxxx(j,im)*td3%yhat3(1, is))*& &td3%yhat3(1, is)*td3%yhat3(j,is) ! y3 += ghxu·ŷ⊗ε ! + first n*q folded indices of (3/6)·ghxxu·ŷ⊗ŷ⊗ε do k=1,td3%q td3%y3(im,is) = td3%y3(im,is) + & &(td3%ghxu(td3%q*(j-1)+k,im)+& &0.5_real64*td3%ghxxu(td3%q*(j-1)+k,im)*td3%yhat3(1, is))*& &td3%yhat3(j, is)*td3%e(k, is) end do end do ! y3 += ghu·ε+(3/6)·ghuss·ε + first q folded indices of ½ghuu·ε⊗ε ! + first q folded indices for (1/6)·ghuuu·ε⊗ε⊗ε ! + first n*q folded indices of (3/6)·ghxuu·ŷ⊗ε⊗ε do j=1,td3%q td3%y3(im,is) = td3%y3(im,is) + & &(0.5_real64*td3%ghuss(j,im)+td3%ghu(j,im))*td3%e(j,is) + & &(0.5_real64*td3%ghuu(j,im)+(1._real64/6._real64)*td3%ghuuu(j,im)*& &td3%e(1, is))*td3%e(1, is)*td3%e(j, is) do k=1,td3%n td3%y3(im,is) = td3%y3(im,is) + & &0.5_real64*td3%ghxuu(td3%uu_size*(k-1)+j,im)*& &td3%yhat3(k, is)*td3%e(1, is)*td3%e(j, is) end do end do ! y3 += remaining ½ghxx·ŷ⊗ŷ terms ! + the next terms starting from n+1 up to xx_size ! of (1/6)ghxxx·ŷ⊗ŷ⊗ŷ ! + remaining terms of (3/6)·ghxxu·ŷ⊗ŷ⊗ε do j=td3%n+1,td3%xx_size td3%y3(im,is) = td3%y3(im,is) + & &(0.5_real64*td3%ghxx(j,im)+(1._real64/6._real64)*td3%ghxxx(j,im)*td3%yhat3(1, is))*& &td3%yhat3(td3%xx_idcs(j)%coor(1), is)*& &td3%yhat3(td3%xx_idcs(j)%coor(2), is) do k=1,td3%q td3%y3(im,is) = td3%y3(im,is)+& &0.5_real64*td3%ghxxu(td3%q*(j-1)+k,im)*& &td3%yhat3(td3%xx_idcs(j)%coor(1), is)*& &td3%yhat3(td3%xx_idcs(j)%coor(2), is)*& &td3%e(k, is) end do end do ! y3 += remaining ½ghuu·ε⊗ε terms ! + the next uu_size terms starting from q+1 ! of (1/6)·ghuuu·ε⊗ε⊗ε ! + remaining terms of (3/6)·ghxuu·ŷ⊗ε⊗ε do j=td3%q+1,td3%uu_size td3%y3(im,is) = td3%y3(im,is) + & &(0.5_real64*td3%ghuu(j,im)+(1._real64/6._real64)*td3%ghuuu(j,im)*td3%e(1, is))*& &td3%e(td3%uu_idcs(j)%coor(1), is)*& &td3%e(td3%uu_idcs(j)%coor(2), is) do k=1,td3%n td3%y3(im,is) = td3%y3(im,is) + & &0.5_real64*td3%ghxuu(td3%uu_size*(k-1)+j,im)*& &td3%yhat3(k, is)*& &td3%e(td3%uu_idcs(j)%coor(1), is)*& &td3%e(td3%uu_idcs(j)%coor(2), is) end do end do ! y3 += remaining (1/6)·ghxxx·ŷ⊗ŷ⊗ŷ terms do j=td3%xx_size+1,td3%xxx_size td3%y3(im,is) = td3%y3(im,is)+& &(1._real64/6._real64)*td3%ghxxx(j,im)*& &td3%yhat3(td3%xxx_idcs(j)%coor(1), is)*& &td3%yhat3(td3%xxx_idcs(j)%coor(2), is)*& &td3%yhat3(td3%xxx_idcs(j)%coor(3), is) end do ! y3 += remaining (1/6)ghuuu·ε⊗ε⊗ε terms do j=td3%uu_size+1,td3%uuu_size td3%y3(im,is) = td3%y3(im,is) + & &(1._real64/6._real64)*td3%ghuuu(j,im)*& &td3%e(td3%uuu_idcs(j)%coor(1), is)*& &td3%e(td3%uuu_idcs(j)%coor(2), is)*& &td3%e(td3%uuu_idcs(j)%coor(3), is) end do end do end do end subroutine thread_eval_3 ! Fills ylat1, ylat2, ylat3 and y3 as ! ylat1 = ghx·ŷ1 + ghu·ε ! ylat2 = ½ghss + ghx·ŷ2 + ½ghxx·ŷ1⊗ŷ1 + ½ghuu·ε⊗ε + ghxu·ŷ1⊗ε ! ylat3 = ghx·ŷ3 + ghxx·ŷ1⊗ŷ2 + ghxu·ŷ2⊗ε + (1/6)·ghxxx·ŷ1⊗ŷ1⊗ŷ1 ! + (1/6)·ghuuu·ε⊗ε⊗ε + (3/6)·ghxxu·ŷ1⊗ŷ1⊗ε ! + (3/6)·ghxuu·ŷ1⊗ε⊗ε + (3/6)·ghxss·ŷ1 + (3/6)·ghuss·ε ! y3 = ybar + ylat1 + ylat2 + ylat3 ! in td3 subroutine thread_eval_3_pruning(arg) bind(c) type(c_ptr), intent(in), value :: arg integer, pointer :: ithread integer :: is, im, j, k, start, end, q, r, j1, j2 ! Checking that the thread number got passed as argument if (.not. c_associated(arg)) then call mexErrMsgTxt("No argument was passed to thread_eval") end if call c_f_pointer(arg, ithread) ! Specifying bounds for the curent thread q = td3%s / td3%numthreads r = mod(td3%s, td3%numthreads) start = (ithread-1)*q+1 if (ithread < td3%numthreads) then end = start+q-1 else end = td3%s end if do is=start,end do im=1,td3%m ! y1 = 0 ! y2 = ½ghss ! y3 = 0 td3%ylat1(im,is) = td3%ss(im) td3%ylat2(im,is) = td3%ss(im)+0.5_real64*td3%ghs2(im) td3%ylat3(im,is) = td3%ss(im) ! y1 += ghx·ŷ1 ! y2 += ghx·ŷ2 + first n folded indices for ½ghxx·ŷ1⊗ŷ1 ! y3 += ghx·ŷ3 +(3/6)·ghxss·ŷ1 ! + first n folded indices for (1/6)ghxxx·ŷ1⊗ŷ1⊗ŷ1 do j=1,td3%n td3%ylat1(im,is) = td3%ylat1(im,is)+& &td3%ghx(j,im)*td3%yhat1(j,is) td3%ylat2(im,is) = td3%ylat2(im,is)+& &td3%ghx(j,im)*td3%yhat2(j,is)+& &0.5_real64*td3%ghxx(j,im)*td3%yhat1(1, is)*td3%yhat1(j, is) td3%ylat3(im,is) = td3%ylat3(im,is)+& &td3%ghx(j,im)*td3%yhat3(j,is)+& &0.5_real64*td3%ghxss(j,im)*td3%yhat1(j,is)+& &(1._real64/6._real64)*td3%ghxxx(j,im)*& &td3%yhat1(1, is)*td3%yhat1(1, is)*td3%yhat1(j,is) ! y2 += + ghxu·ŷ1⊗ε ! y3 += + ghxu·ŷ2⊗ε ! + first n*q folded indices of (3/6)·ghxxu·ŷ1⊗ŷ1⊗ε do k=1,td3%q td3%ylat2(im,is) = td3%ylat2(im,is)+& &td3%ghxu(td3%q*(j-1)+k,im)*& &td3%yhat1(j, is)*td3%e(k, is) td3%ylat3(im,is) = td3%ylat3(im,is)+& &td3%ghxu(td3%q*(j-1)+k,im)*& &td3%yhat2(j, is)*td3%e(k, is)+& &0.5_real64*td3%ghxxu(td3%q*(j-1)+k,im)*& &td3%yhat1(1, is)*td3%yhat1(j, is)*td3%e(k, is) end do end do ! y1 += + ghu·ε ! y2 += + first q folded indices for ½ghuu·ε⊗ε ! y3 += + (3/6)·ghuss·ε ! + first n*q folded indices of (3/6)·ghxuu·ŷ1⊗ε⊗ε ! + first n folded indices of (1/6)·ghuuu·ε⊗ε⊗ε do j=1,td3%q td3%ylat1(im,is) = td3%ylat1(im,is) + td3%ghu(j,im)*td3%e(j,is) td3%ylat2(im,is) = td3%ylat2(im,is) + 0.5_real64*td3%ghuu(j,im)*td3%e(1, is)*td3%e(j, is) td3%ylat3(im,is) = td3%ylat3(im,is)+& &0.5_real64*td3%ghuss(j,im)*td3%e(j,is)+& &(1._real64/6._real64)*td3%ghuuu(j,im)*& &td3%e(1, is)*td3%e(1, is)*td3%e(j, is) do k=1,td3%n td3%ylat3(im,is) = td3%ylat3(im,is)+& &0.5_real64*td3%ghxuu(td3%uu_size*(k-1)+j,im)*& &td3%yhat1(k, is)*td3%e(1, is)*td3%e(j, is) end do end do ! y2 += remaining ½ghxx·ŷ1⊗ŷ1 terms ! y3 += + the next terms starting from n+1 up to xx_size ! of (1/6)ghxxx·ŷ1⊗ŷ1⊗ŷ1 ! + remaining terms of (3/6)·ghxxu·ŷ1⊗ŷ1⊗ε do j=td3%n+1,td3%xx_size td3%ylat2(im,is) = td3%ylat2(im,is)+& &0.5_real64*td3%ghxx(j,im)*& &td3%yhat1(td3%xx_idcs(j)%coor(1), is)*& &td3%yhat1(td3%xx_idcs(j)%coor(2), is) td3%ylat3(im,is) = td3%ylat3(im,is)+& &(1._real64/6._real64)*td3%ghxxx(j,im)*& &td3%yhat1(1, is)*& &td3%yhat1(td3%xx_idcs(j)%coor(1), is)*& &td3%yhat1(td3%xx_idcs(j)%coor(2), is) do k=1,td3%q td3%ylat3(im,is) = td3%ylat3(im,is)+& &0.5_real64*td3%ghxxu(td3%q*(j-1)+k,im)*& &td3%yhat1(td3%xx_idcs(j)%coor(1), is)*& &td3%yhat1(td3%xx_idcs(j)%coor(2), is)*& &td3%e(k, is) end do end do ! y2 += remaining ½ghuu·ε⊗ε terms ! y3 += + remaining terms of (3/6)·ghxuu·ŷ⊗ε⊗ε ! + the next uu_size terms starting from q+1 ! of (1/6)·ghuuu·ε⊗ε⊗ε do j=td3%q+1,td3%uu_size td3%ylat2(im,is) = td3%ylat2(im,is)+& &0.5_real64*td3%ghuu(j,im)*& &td3%e(td3%uu_idcs(j)%coor(1), is)*& &td3%e(td3%uu_idcs(j)%coor(2), is) td3%ylat3(im,is) = td3%ylat3(im,is)+& &(1._real64/6._real64)*td3%ghuuu(j,im)*& &td3%e(1, is)*& &td3%e(td3%uu_idcs(j)%coor(1), is)*& &td3%e(td3%uu_idcs(j)%coor(2), is) do k=1,td3%n td3%ylat3(im,is) = td3%ylat3(im,is)+& &0.5_real64*td3%ghxuu(td3%uu_size*(k-1)+j,im)*& &td3%yhat1(k, is)*& &td3%e(td3%uu_idcs(j)%coor(1), is)*& &td3%e(td3%uu_idcs(j)%coor(2), is) end do end do ! y3 += remaining (1/6)·ghxxx·ŷ⊗ŷ⊗ŷ terms do j=td3%xx_size+1,td3%xxx_size td3%ylat3(im,is) = td3%ylat3(im,is)+& &(1._real64/6._real64)*td3%ghxxx(j,im)*& &td3%yhat1(td3%xxx_idcs(j)%coor(1), is)*& &td3%yhat1(td3%xxx_idcs(j)%coor(2), is)*& &td3%yhat1(td3%xxx_idcs(j)%coor(3), is) end do ! y3 += remaining (1/6)ghuuu·ε⊗ε⊗ε terms do j=td3%uu_size+1,td3%uuu_size td3%ylat3(im,is) = td3%ylat3(im,is)+& &(1._real64/6._real64)*td3%ghuuu(j,im)*& &td3%e(td3%uuu_idcs(j)%coor(1), is)*& &td3%e(td3%uuu_idcs(j)%coor(2), is)*& &td3%e(td3%uuu_idcs(j)%coor(3), is) end do ! y3 += first n folded indices for ghxx·ŷ1⊗ŷ2 do j=1,td3%xx_size j1 = td3%xx_idcs(j)%coor(1) j2 = td3%xx_idcs(j)%coor(2) if (j1 == j2) then td3%ylat3(im,is) = td3%ylat3(im,is)+& &td3%ghxx(j,im)*& &td3%yhat1(j1,is)*& &td3%yhat2(j2,is) else td3%ylat3(im,is) = td3%ylat3(im,is)+& &0.5_real64*td3%ghxx(j,im)*(& &td3%yhat1(j1,is)*& &td3%yhat2(j2,is)+& &td3%yhat1(j2,is)*& &td3%yhat2(j1,is)) end if end do td3%y3(im,is) = td3%ylat1(im,is)+td3%ylat2(im,is)+& &td3%ylat3(im,is)-2*td3%ss(im) end do end do end subroutine thread_eval_3_pruning end module pparticle_3 ! The code of the local_state_space_iteration_3 routine ! Input: ! prhs[1] yhat [double] n×s array, time t particles if pruning is false ! 3n×s array, time t particles if pruning is true ! Rows 1 to n contain the pruned first order. ! Rows n+1 to 2*n contain the pruned second order. ! Rows 2*n+1 to 3*n contain the pruned third order. ! prhs[2] e [double] q×s array, time t innovations. ! prhs[3] ghx [double] m×n array, first order reduced form. ! prhs[4] ghu [double] m×q array, first order reduced form. ! prhs[5] ghxx [double] m×n² array, second order reduced form. ! prhs[6] ghuu [double] m×q² array, second order reduced form. ! prhs[7] ghxu [double] m×nq array, second order reduced form. ! prhs[8] ghs2 [double] m×1 array, second order reduced form. ! prhs[9] ghxxx [double] m×n array, third order reduced form. ! prhs[10] ghuuu [double] m×q array, third order reduced form. ! prhs[11] ghxxu [double] m×n²q array, third order reduced form. ! prhs[12] ghxuu [double] m×nq² array, third order reduced form. ! prhs[13] ghxss [double] m×n array, third order reduced form. ! prhs[14] ghuss [double] m×q array, third order reduced form. ! prhs[15] ss [double] m×1 array, deterministic steady state ! prhs[16] numthreads [double] num of threads ! prhs[17] pruning [double] pruning option ! ! Output: ! plhs[1] y3 [double] m×s array, time t+1 particles. ! plhs[2] ylat [double] 3m×s array, time t+1 particles for the ! pruning latent variables up to the 3rd order. Rows 1 to m contain the pruned ! first order. Rows m+1 to 2*m contain the pruned second order. Rows 2*m+1 ! to 3*m contain the pruned third order. subroutine mexFunction(nlhs, plhs, nrhs, prhs) bind(c, name='mexFunction') use iso_c_binding use matlab_mex use pascal use partitions use pthread use pparticle_3 implicit none (type, external) type(c_ptr), dimension(*), intent(in), target :: prhs type(c_ptr), dimension(*), intent(out) :: plhs integer(c_int), intent(in), value :: nlhs, nrhs integer :: n, m, s, q, numthreads real(real64), pointer, contiguous :: ghx(:,:), ghu(:,:), ghxx(:,:), & &ghuu(:,:), ghxu(:,:), ghxxx(:,:), ghuuu(:,:), ghxxu(:,:), & &ghxuu(:,:), ghxss(:,:), ghuss(:,:), yhatlat(:,:), ylat(:,:) integer :: i, j, k, xx_size, uu_size, xxx_size, uuu_size, rc character(kind=c_char, len=10) :: arg_nber type(pascal_triangle) :: p integer, allocatable :: xxx_nbeq(:), & &uu_nbeq(:), uuu_nbeq(:), xx_off(:), uu_off(:), & &xxx_off(:), uuu_off(:) integer, allocatable, target :: xx_nbeq(:) type(c_pthread_t), allocatable :: threads(:) integer, allocatable, target :: routines(:) logical :: pruning ! 0. Checking the consistency and validity of input arguments if (nrhs /= 17) then call mexErrMsgTxt("Must have exactly 17 inputs") end if if (nlhs > 2) then call mexErrMsgTxt("Too many output arguments.") end if do i=1,15 if (.not. (c_associated(prhs(i)) .and. mxIsDouble(prhs(i)) .and. & (.not. mxIsComplex(prhs(i))) .and. (.not. mxIsSparse(prhs(i))))) then write (arg_nber,"(i2)") i call mexErrMsgTxt("Argument " // trim(arg_nber) // " should be a real dense matrix") end if end do if (.not. (c_associated(prhs(16)) .and. mxIsScalar(prhs(16)) .and. & mxIsNumeric(prhs(16)))) then call mexErrMsgTxt("Argument 16 should be a numeric scalar") end if numthreads = int(mxGetScalar(prhs(16))) if (numthreads <= 0) then call mexErrMsgTxt("Argument 16 should be a positive integer") end if td3%numthreads = numthreads if (.not. (c_associated(prhs(17)) .and. mxIsLogicalScalar(prhs(17)))) then call mexErrMsgTxt("Argument 17 should be a logical scalar") end if pruning = mxGetScalar(prhs(17)) == 1._c_double if (pruning) then n = int(mxGetM(prhs(1)))/3 ! Number of states. else n = int(mxGetM(prhs(1))) ! Number of states. end if s = int(mxGetN(prhs(1))) ! Number of particles. q = int(mxGetM(prhs(2))) ! Number of innovations. m = int(mxGetM(prhs(3))) ! Number of elements in the union of states and observed variables. td3%n = n td3%s = s td3%q = q td3%m = m if ((s /= mxGetN(prhs(2))) & ! Number of columns for epsilon &.or. (n /= mxGetN(prhs(3))) & ! Number of columns for ghx &.or. (m /= mxGetM(prhs(4))) & ! Number of rows for ghu &.or. (q /= mxGetN(prhs(4))) & ! Number of columns for ghu &.or. (m /= mxGetM(prhs(5))) & ! Number of rows for ghxx &.or. (n*n /= mxGetN(prhs(5))) & ! Number of columns for ghxx &.or. (m /= mxGetM(prhs(6))) & ! Number of rows for ghuu &.or. (q*q /= mxGetN(prhs(6))) & ! Number of columns for ghuu &.or. (m /= mxGetM(prhs(7))) & ! Number of rows for ghxu &.or. (n*q /= mxGetN(prhs(7))) & ! Number of columns for ghxu &.or. (m /= mxGetM(prhs(8))) & ! Number of rows for ghs2 &.or. (m /= mxGetM(prhs(9))) & ! Number of rows for ghxxx &.or. (n*n*n /= mxGetN(prhs(9))) & ! Number of columns for ghxxx &.or. (m /= mxGetM(prhs(10))) & ! Number of rows for ghuuu &.or. (q*q*q /= mxGetN(prhs(10))) & ! Number of columns for ghuuu &.or. (m /= mxGetM(prhs(11))) & ! Number of rows for ghxxu &.or. (n*n*q /= mxGetN(prhs(11))) & ! Number of columns for ghxxu &.or. (m /= mxGetM(prhs(12))) & ! Number of rows for ghxuu &.or. (n*q*q /= mxGetN(prhs(12))) & ! Number of columns for ghxuu &.or. (m /= mxGetM(prhs(13))) & ! Number of rows for ghxss &.or. (n /= mxGetN(prhs(13))) & ! Number of columns for ghxss &.or. (m /= mxGetM(prhs(14))) & ! Number of rows for ghuss &.or. (q /= mxGetN(prhs(14))) & ! Number of columns for ghuss &.or. (m /= mxGetM(prhs(15))) & ! Number of rows for ss &) then call mexErrMsgTxt("Input dimension mismatch") end if ! 1. Getting relevant information to take advantage of symmetries ! There are symmetries in the ghxx, ghuu, ghxxx, ghuuu, ghxxu and ghxuu terms ! that we may exploit to avoid unnecessarily repeating operations in matrix-vector ! multiplications, e.g in ghxx·ŷ⊗ŷ. ! In matrix-vector multiplications such as ghxx·ŷ⊗ŷ, we loop through all the folded offsets ! and thus need for each one of them : ! (i) the corresponding folded index, e.g (α₁,α₂), α₁≤α₂ for ghxx ! (i) the corresponding offset in the unfolded matrix ! (ii) the corresponding number of equivalent unfolded indices (1 if α₁=α₂, 2 otherwise) ! It is better to compute these beforehand as it avoids repeating the calculation for ! each particle. The `folded_offset_loop` routine carries out this operation. p = pascal_triangle(max(n,q)+3-1) xx_size = get(2,n+2-1,p) uu_size = get(2,q+2-1,p) xxx_size = get(3,n+3-1,p) uuu_size = get(3,q+3-1,p) td3%xx_size = xx_size td3%uu_size = uu_size td3%xxx_size = xxx_size td3%uuu_size = uuu_size allocate(td3%xx_idcs(xx_size), td3%uu_idcs(uu_size), & &td3%xxx_idcs(xxx_size), td3%uuu_idcs(uuu_size), & &xx_off(xx_size), uu_off(uu_size), & &xxx_off(xxx_size), uuu_off(uuu_size), & &xx_nbeq(xx_size), uu_nbeq(uu_size), & &xxx_nbeq(xxx_size), uuu_nbeq(uuu_size)) call folded_offset_loop(td3%xx_idcs, xx_nbeq, & &xx_off, n, 2, p) call folded_offset_loop(td3%uu_idcs, uu_nbeq, & &uu_off, q, 2, p) call folded_offset_loop(td3%xxx_idcs, xxx_nbeq, & &xxx_off, n, 3, p) call folded_offset_loop(td3%uuu_idcs, uuu_nbeq, & &uuu_off, q, 3, p) ! 1. Storing the relevant input variables in Fortran if (pruning) then yhatlat(1:3*n,1:s) => mxGetPr(prhs(1)) td3%yhat1 => yhatlat(1:n,1:s) td3%yhat2 => yhatlat(n+1:2*n,1:s) td3%yhat3 => yhatlat(2*n+1:3*n,1:s) ! td3%xx_nbeq => xx_nbeq else td3%yhat3(1:n,1:s) => mxGetPr(prhs(1)) end if td3%e(1:q,1:s) => mxGetPr(prhs(2)) ghx(1:m,1:n) => mxGetPr(prhs(3)) ghu(1:m,1:q) => mxGetPr(prhs(4)) ghxx(1:m,1:n*n) => mxGetPr(prhs(5)) ghuu(1:m,1:q*q) => mxGetPr(prhs(6)) ghxu(1:m,1:n*q) => mxGetPr(prhs(7)) td3%ghs2 => mxGetPr(prhs(8)) ghxxx(1:m,1:n*n*n) => mxGetPr(prhs(9)) ghuuu(1:m,1:q*q*q) => mxGetPr(prhs(10)) ghxxu(1:m,1:n*n*q) => mxGetPr(prhs(11)) ghxuu(1:m,1:n*q*q) => mxGetPr(prhs(12)) ghxss(1:m,1:n) => mxGetPr(prhs(13)) ghuss(1:m,1:q) => mxGetPr(prhs(14)) td3%ss => mxGetPr(prhs(15)) ! Getting a transposed folded copy of the unfolded tensors ! for future loops to be more efficient allocate(td3%ghx(n,m), td3%ghu(q,m),& &td3%ghuu(uu_size,m), td3%ghxu(n*q,m), & &td3%ghxx(xx_size,m), & &td3%ghxxx(xxx_size,m), td3%ghuuu(uuu_size,m), & &td3%ghxxu(xx_size*q,m), td3%ghxuu(n*uu_size,m), & &td3%ghxss(n,m), td3%ghuss(q,m)) do i=1,m do j=1,n td3%ghx(j,i) = ghx(i,j) td3%ghxss(j,i) = ghxss(i,j) td3%ghxx(j,i) = xx_nbeq(j)*ghxx(i,xx_off(j)) td3%ghxxx(j,i) = xxx_nbeq(j)*ghxxx(i,xxx_off(j)) do k=1,q td3%ghxu(q*(j-1)+k,i) = ghxu(i,q*(j-1)+k) td3%ghxxu(q*(j-1)+k,i) = xx_nbeq(j)*ghxxu(i,q*(xx_off(j)-1)+k) end do end do do j=n+1,xx_size td3%ghxx(j,i) = xx_nbeq(j)*ghxx(i,xx_off(j)) td3%ghxxx(j,i) = xxx_nbeq(j)*ghxxx(i,xxx_off(j)) do k=1,q td3%ghxxu(q*(j-1)+k,i) = xx_nbeq(j)*ghxxu(i,q*(xx_off(j)-1)+k) end do end do do j=xx_size+1,xxx_size td3%ghxxx(j,i) = xxx_nbeq(j)*ghxxx(i,xxx_off(j)) end do do j=1,q td3%ghu(j,i) = ghu(i,j) td3%ghuss(j,i) = ghuss(i,j) td3%ghuu(j,i) = uu_nbeq(j)*ghuu(i,uu_off(j)) td3%ghuuu(j,i) = uuu_nbeq(j)*ghuuu(i,uuu_off(j)) do k=1,n td3%ghxuu(uu_size*(k-1)+j,i) = uu_nbeq(j)*ghxuu(i,q*q*(k-1)+uu_off(j)) end do end do do j=q+1,uu_size td3%ghuu(j,i) = uu_nbeq(j)*ghuu(i,uu_off(j)) td3%ghuuu(j,i) = uuu_nbeq(j)*ghuuu(i,uuu_off(j)) do k=1,n td3%ghxuu(uu_size*(k-1)+j,i) = uu_nbeq(j)*ghxuu(i,q*q*(k-1)+uu_off(j)) end do end do do j=uu_size+1,uuu_size td3%ghuuu(j,i) = uuu_nbeq(j)*ghuuu(i,uuu_off(j)) end do end do ! 3. Implementing the calculations: plhs(1) = mxCreateDoubleMatrix(int(m, mwSize), int(s, mwSize), mxREAL) td3%y3(1:m,1:s) => mxGetPr(plhs(1)) if (pruning) then plhs(2) = mxCreateDoubleMatrix(int(3*m, mwSize), int(s, mwSize), mxREAL) ylat(1:3*m,1:s) => mxGetPr(plhs(2)) td3%ylat1 => ylat(1:m,1:s) td3%ylat2 => ylat(m+1:2*m,1:s) td3%ylat3 => ylat(2*m+1:3*m,1:s) end if allocate(threads(numthreads), routines(numthreads)) routines = [ (i, i = 1, numthreads) ] if (numthreads == 1) then if (pruning) then call thread_eval_3_pruning(c_loc(routines(1))) else call thread_eval_3(c_loc(routines(1))) end if else ! Creating the threads if (pruning) then do i = 1, numthreads rc = c_pthread_create(threads(i), c_null_ptr, c_funloc(thread_eval_3_pruning), c_loc(routines(i))) end do else do i = 1, numthreads rc = c_pthread_create(threads(i), c_null_ptr, c_funloc(thread_eval_3), c_loc(routines(i))) end do end if ! Joining the threads do i = 1, numthreads rc = c_pthread_join(threads(i), c_loc(routines(i))) end do end if end subroutine mexFunction