function steady() % function steady() % computes and prints the steady state calculations % % INPUTS % none % % OUTPUTS % none % % SPECIAL REQUIREMENTS % none % Copyright © 2001-2023 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . global M_ oo_ options_ test_for_deep_parameters_calibration(M_); if options_.steadystate_flag && options_.homotopy_mode error('STEADY: Can''t use homotopy when providing a steady state external file'); end % Keep of a copy of M_.Sigma_e Sigma_e = M_.Sigma_e; % Set M_.Sigma_e=0 (we compute the *deterministic* steady state) M_.Sigma_e(:,:) = 0; info = 0; switch options_.homotopy_mode case 1 [M_,oo_,info,ip,ix,ixd] = homotopy1(options_.homotopy_values,options_.homotopy_steps,M_,options_,oo_); case 2 homotopy2(options_.homotopy_values, options_.homotopy_steps); case 3 [M_,oo_,info,ip,ix,ixd] = homotopy3(options_.homotopy_values,options_.homotopy_steps,M_,options_,oo_); end if info(1) hv = options_.homotopy_values; skipline() disp('WARNING: homotopy step was not completed') disp('The last values for which a solution was found are:') for i=1:length(ip) fprintf('%12s %12.6f\n',char(M_.param_names(hv(ip(i),2))), ... M_.params(hv(ip(i),2))) end for i=1:length(ix) fprintf('%12s %12.6f\n',char(M_.exo_names(hv(ix(i),2))), ... oo_.exo_steady_state(hv(ix(i),2))) end for i=1:length(ixd) fprintf('%12s %12.6f\n',char(M_.exo_det_names(hv(ixd(i),2))), ... oo_.exo_det_steady_state(hv(ixd(i),2))) end if options_.homotopy_force_continue disp('Option homotopy_continue is set, so I continue ...') else error('Homotopy step failed') end end [oo_.steady_state,M_.params,info] = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck); if info(1) == 0 if ~options_.noprint disp_steady_state(M_,oo_,options_); end else if ~options_.noprint if ~isempty(oo_.steady_state) display_static_residuals(M_, options_, oo_); else skipline() disp('Residuals of the static equations cannot be computed because the steady state routine returned an empty vector.') skipline() end end if options_.debug fprintf('\nsteady: The steady state computation failed. It terminated with the following values:\n') if ~isreal(oo_.steady_state) format_string=sprintf('%%-%us= %%g%%+gi\n',size(strvcat(M_.endo_names),2)+1); else format_string=sprintf('%%-%us= %%14.6f\n',size(strvcat(M_.endo_names),2)+1); end for i=1:M_.orig_endo_nbr if ~isreal(oo_.steady_state) fprintf(format_string, M_.endo_names{i}, real(oo_.steady_state(i)),imag(oo_.steady_state(i))); else fprintf(format_string, M_.endo_names{i}, oo_.steady_state(i)); end end end print_info(info,options_.noprint, options_); end M_.Sigma_e = Sigma_e; function [M,oo,info,ip,ix,ixd] = homotopy1(values, step_nbr, M, options, oo) % Implements homotopy (mode 1) for steady-state computation. % The multi-dimensional vector going from the set of initial values % to the set of final values is divided in as many sub-vectors as % there are steps, and the problem is solved as many times. % % INPUTS % values: a matrix with 4 columns, representing the content of % homotopy_setup block, with one variable per line. % Column 1 is variable type (1 for exogenous, 2 for % exogenous deterministic, 4 for parameters) % Column 2 is symbol integer identifier. % Column 3 is initial value, and column 4 is final value. % Column 3 can contain NaNs, in which case previous % initialization of variable will be used as initial value. % step_nbr: number of steps for homotopy % M struct of model parameters % options struct of options % oo struct of outputs % % OUTPUTS % M struct of model parameters % oo struct of outputs % ip index of parameters % ix index of exogenous variables % ixp index of exogenous deterministic variables nv = size(values, 1); ip = find(values(:,1) == 4); % Parameters ix = find(values(:,1) == 1); % Exogenous ixd = find(values(:,1) == 2); % Exogenous deterministic if length([ip; ix; ixd]) ~= nv error('HOMOTOPY mode 1: incorrect variable types specified') end % Construct vector of starting values, using previously initialized values % when initial value has not been given in homotopy_setup block oldvalues = values(:,3); ipn = find(values(:,1) == 4 & isnan(oldvalues)); oldvalues(ipn) = M.params(values(ipn, 2)); ixn = find(values(:,1) == 1 & isnan(oldvalues)); oldvalues(ixn) = oo.exo_steady_state(values(ixn, 2)); ixdn = find(values(:,1) == 2 & isnan(oldvalues)); oldvalues(ixdn) = oo.exo_det_steady_state(values(ixdn, 2)); points = zeros(nv, step_nbr+1); for i = 1:nv if (oldvalues(i) ~= values(i, 4)) points(i,:) = oldvalues(i):(values(i,4)-oldvalues(i))/step_nbr:values(i,4); else points(i,:) = values(i,4); end end for i=1:step_nbr+1 disp([ 'HOMOTOPY mode 1: computing step ' int2str(i-1) '/' int2str(step_nbr) '...' ]) old_params = M.params; old_exo = oo.exo_steady_state; old_exo_det = oo.exo_det_steady_state; M.params(values(ip,2)) = points(ip,i); oo.exo_steady_state(values(ix,2)) = points(ix,i); oo.exo_det_steady_state(values(ixd,2)) = points(ixd,i); [steady_state,M.params,info] = evaluate_steady_state(oo.steady_state,[oo.exo_steady_state; oo.exo_det_steady_state],M,options,~options.steadystate.nocheck); if info(1) == 0 % if homotopy step is not successful, current values of steady % state are not modified oo.steady_state = steady_state; else M.params = old_params; oo.exo_steady_state = old_exo; oo.exo_det_steady_state = old_exo_det; break end end function homotopy2(values, step_nbr) % Implements homotopy (mode 2) for steady-state computation. % Only one parameter/exogenous is changed at a time. % Computation jumps to next variable only when current variable has been % brought to its final value. % Variables are processed in the order in which they appear in "values". % The problem is solved var_nbr*step_nbr times. % % INPUTS % values: a matrix with 4 columns, representing the content of % homotopy_setup block, with one variable per line. % Column 1 is variable type (1 for exogenous, 2 for % exogenous deterministic, 4 for parameters) % Column 2 is symbol integer identifier. % Column 3 is initial value, and column 4 is final value. % Column 3 can contain NaNs, in which case previous % initialization of variable will be used as initial value. % step_nbr: number of steps for homotopy global M_ oo_ options_ nv = size(values, 1); oldvalues = values(:,3); % Initialize all variables with initial value, or the reverse... for i = 1:nv switch values(i,1) case 1 if isnan(oldvalues(i)) oldvalues(i) = oo_.exo_steady_state(values(i,2)); else oo_.exo_steady_state(values(i,2)) = oldvalues(i); end case 2 if isnan(oldvalues(i)) oldvalues(i) = oo_.exo_det_steady_state(values(i,2)); else oo_.exo_det_steady_state(values(i,2)) = oldvalues(i); end case 4 if isnan(oldvalues(i)) oldvalues(i) = M_.params(values(i,2)); else M_.params(values(i,2)) = oldvalues(i); end otherwise error('HOMOTOPY mode 2: incorrect variable types specified') end end if any(oldvalues == values(:,4)) error('HOMOTOPY mode 2: initial and final values should be different') end % Actually do the homotopy for i = 1:nv switch values(i,1) case 1 varname = M_.exo_names{values(i,2)}; case 2 varname = M_.exo_det_names{values(i,2)}; case 4 varname = M_.param_names{values(i,2)}; end for v = oldvalues(i):(values(i,4)-oldvalues(i))/step_nbr:values(i,4) switch values(i,1) case 1 oo_.exo_steady_state(values(i,2)) = v; case 2 oo_.exo_det_steady_state(values(i,2)) = v; case 4 M_.params(values(i,2)) = v; end disp([ 'HOMOTOPY mode 2: lauching solver with ' varname ' = ' num2str(v) ' ...']) oo_.steady_state = evaluate_steady_state(oo_.steady_state,[oo_.exo_steady_state; oo_.exo_det_steady_state],M_,options_,~options_.steadystate.nocheck); end end function [M,oo,info,ip,ix,ixd] = homotopy3(values, step_nbr, M, options, oo) % Implements homotopy (mode 3) for steady-state computation. % Tries first the most extreme values. If it fails to compute the steady % state, the interval between initial and desired values is divided by two % for each parameter. Every time that it is impossible to find a steady % state, the previous interval is divided by two. When one succeed to find % a steady state, the previous interval is multiplied by two. % % INPUTS % values: a matrix with 4 columns, representing the content of % homotopy_setup block, with one variable per line. % Column 1 is variable type (1 for exogenous, 2 for % exogenous deterministic, 4 for parameters) % Column 2 is symbol integer identifier. % Column 3 is initial value, and column 4 is final value. % Column 3 can contain NaNs, in which case previous % initialization of variable will be used as initial value. % step_nbr: maximum number of steps to try before aborting % M struct of model parameters % options struct of options % oo struct of outputs % % OUTPUTS % M struct of model parameters % oo struct of outputs % info return status 0: OK, 1: failed % ip index of parameters % ix index of exogenous variables % ixp index of exogenous deterministic variables info = []; tol = 1e-8; nv = size(values,1); ip = find(values(:,1) == 4); % Parameters ix = find(values(:,1) == 1); % Exogenous ixd = find(values(:,1) == 2); % Exogenous deterministic if length([ip; ix; ixd]) ~= nv error('HOMOTOPY mode 3: incorrect variable types specified') end % Construct vector of starting values, using previously initialized values % when initial value has not been given in homotopy_setup block last_values = values(:,3); ipn = find(values(:,1) == 4 & isnan(last_values)); last_values(ipn) = M.params(values(ipn, 2)); ixn = find(values(:,1) == 1 & isnan(last_values)); last_values(ixn) = oo.exo_steady_state(values(ixn, 2)); ixdn = find(values(:,1) == 2 & isnan(last_values)); last_values(ixdn) = oo.exo_det_steady_state(values(ixdn, 2)); targetvalues = values(:,4); %if min(abs(targetvalues - last_values)) < tol % error('HOMOTOPY mode 3: distance between initial and final values should be at least %e for all variables', tol) %end iplus = find(targetvalues > last_values); iminus = find(targetvalues < last_values); curvalues = last_values; inc = (targetvalues-last_values)/2; kplus = []; kminus = []; last_values = []; disp('HOMOTOPY mode 3: launching solver at initial point...') iter = 1; while iter <= step_nbr M.params(values(ip,2)) = curvalues(ip); oo.exo_steady_state(values(ix,2)) = curvalues(ix); oo.exo_det_steady_state(values(ixd,2)) = curvalues(ixd); old_ss = oo.steady_state; [steady_state,params,info] = evaluate_steady_state(old_ss,[oo.exo_steady_state; oo.exo_det_steady_state],M,options,~options.steadystate.nocheck); if info(1) == 0 oo.steady_state = steady_state; M.params = params; if length([kplus; kminus]) == nv return end if iter == 1 disp('HOMOTOPY mode 3: successful step, now jumping to final point...') else disp('HOMOTOPY mode 3: successful step, now multiplying increment by 2...') end last_values = curvalues; old_params = params; old_exo_steady_state = oo.exo_steady_state; old_exo_det_steady_state = oo.exo_det_steady_state; inc = 2*inc; elseif iter == 1 error('HOMOTOPY mode 3: can''t solve the model at 1st iteration') else disp('HOMOTOPY mode 3: failed step, now dividing increment by 2...') inc = inc/2; oo.steady_state = old_ss; end curvalues = last_values + inc; kplus = find(curvalues(iplus) >= targetvalues(iplus)); curvalues(iplus(kplus)) = targetvalues(iplus(kplus)); kminus = find(curvalues(iminus) <= targetvalues(iminus)); curvalues(iminus(kminus)) = targetvalues(iminus(kminus)); if max(abs(inc)) < tol disp('HOMOTOPY mode 3: failed, increment has become too small') M.params = old_params; oo.exo_steady_state = old_exo_steady_state; oo.exo_det_steady_state = old_exo_det_steady_state; return end iter = iter + 1; end disp('HOMOTOPY mode 3: failed, maximum iterations reached') M.params = old_params; oo.exo_steady_state = old_exo_steady_state; oo.exo_det_steady_state = old_exo_det_steady_state;