@q $Id: decision_rule.hweb 2336 2009-01-14 10:37:02Z kamenik $ @> @q Copyright 2004, Ondra Kamenik @> @*2 Decision rule and simulation. Start of {\tt decision\_rule.h} file. The main purpose of this file is a decision rule representation which can run a simulation. So we define an interface for classes providing realizations of random shocks, and define the class |DecisionRule|. The latter basically takes tensor container of derivatives of policy rules, and adds them up with respect to $\sigma$. The class allows to specify the $\sigma$ different from $1$. In addition, we provide classes for running simulations and storing the results, calculating some statistics and generating IRF. The class |DRFixPoint| allows for calculation of the fix point of a given decision rule. @s DecisionRule int @s DecisionRuleImpl int @s FoldDecisionRule int @s UnfoldDecisionRule int @s ShockRealization int @s DRFixPoint int @s SimResults int @s SimResultsStats int @s SimResultsDynamicStats int @s RTSimResultsStats int @s SimResultsIRF int @s IRFResults int @s SimulationWorker int @s RTSimulationWorker int @s SimulationIRFWorker int @s RandomShockRealization int @s ExplicitShockRealization int @s GenShockRealization int @s IRFShockRealization int @c #ifndef DECISION_RULE_H #define DECISION_RULE_H #include #include "kord_exception.h" #include "korder.h" #include "normal_conjugate.h" #include "mersenne_twister.h" @<|ShockRealization| class declaration@>; @<|DecisionRule| class declaration@>; @<|DecisionRuleImpl| class declaration@>; @<|FoldDecisionRule| class declaration@>; @<|UnfoldDecisionRule| class declaration@>; @<|DRFixPoint| class declaration@>; @<|SimResults| class declaration@>; @<|SimResultsStats| class declaration@>; @<|SimResultsDynamicStats| class declaration@>; @<|SimResultsIRF| class declaration@>; @<|RTSimResultsStats| class declaration@>; @<|IRFResults| class declaration@>; @<|SimulationWorker| class declaration@>; @<|SimulationIRFWorker| class declaration@>; @<|RTSimulationWorker| class declaration@>; @<|RandomShockRealization| class declaration@>; @<|ExplicitShockRealization| class declaration@>; @<|GenShockRealization| class declaration@>; #endif @ This is a general interface to a shock realizations. The interface has only one method returning the shock realizations at the given time. This method is not constant, since it may change a state of the object. @<|ShockRealization| class declaration@>= class ShockRealization { public:@; virtual ~ShockRealization()@+ {} virtual void get(int n, Vector& out) =0; virtual int numShocks() const =0; }; @ This class is an abstract interface to decision rule. Its main purpose is to define a common interface for simulation of a decision rule. We need only a simulate, evaluate, cetralized clone and output method. The |simulate| method simulates the rule for a given realization of the shocks. |eval| is a primitive evaluation (it takes a vector of state variables (predetermined, both and shocks) and returns the next period variables. Both input and output are in deviations from the rule's steady. |evaluate| method makes only one step of simulation (in terms of absolute values, not deviations). |centralizedClone| returns a new copy of the decision rule, which is centralized about provided fix-point. And finally |writeMat| writes the decision rule to the MAT file. @<|DecisionRule| class declaration@>= class DecisionRule { public:@; enum emethod {@+ horner, trad @+}; virtual ~DecisionRule()@+ {} virtual TwoDMatrix* simulate(emethod em, int np, const Vector& ystart, ShockRealization& sr) const =0; virtual void eval(emethod em, Vector& out, const ConstVector& v) const =0; virtual void evaluate(emethod em, Vector& out, const ConstVector& ys, const ConstVector& u) const =0; virtual void writeMat(mat_t* fd, const char* prefix) const =0; virtual DecisionRule* centralizedClone(const Vector& fixpoint) const =0; virtual const Vector& getSteady() const =0; virtual int nexog() const =0; virtual const PartitionY& getYPart() const =0; }; @ The main purpose of this class is to implement |DecisionRule| interface, which is a simulation. To be able to do this we have to know the partitioning of state vector $y$ since we will need to pick only predetermined part $y^*$. Also, we need to know the steady state. The decision rule will take the form: $$y_t-\bar y=\sum_{i=0}^n\left[g_{(yu)^i}\right]_{\alpha_1\ldots\alpha_i}\prod_{m=1}^i \left[\matrix{y^*_{t-1}-\bar y^*\cr u_t}\right]^{\alpha_m},$$ where the tensors $\left[g_{(yu)^i}\right]$ are tensors of the constructed container, and $\bar y$ is the steady state. If we know the fix point of the rule (conditional zero shocks) $\tilde y$, the rule can be transformed to so called ``centralized'' form. This is very similar to the form above but the zero dimensional tensor is zero: $$y_t-\tilde y=\sum_{i=1}^n \left[\tilde g_{(yu)^i}\right]_{\alpha_1\ldots\alpha_i}\prod_{m=1}^i \left[\matrix{y^*_{t-1}-\tilde y^*\cr u_t}\right]^{\alpha_m}.$$ We provide a method and a constructor to transform a rule to the centralized form. The class is templated, the template argument is either |KOrder::fold| or |KOrder::unfold|. So, there are two implementations of |DecisionRule| interface. @<|DecisionRuleImpl| class declaration@>= template class DecisionRuleImpl : public ctraits::Tpol, public DecisionRule { protected:@; typedef typename ctraits::Tpol _Tparent; const Vector ysteady; const PartitionY ypart; const int nu; public:@; DecisionRuleImpl(const _Tparent& pol, const PartitionY& yp, int nuu, const Vector& ys) : ctraits::Tpol(pol), ysteady(ys), ypart(yp), nu(nuu)@+ {} DecisionRuleImpl(_Tparent& pol, const PartitionY& yp, int nuu, const Vector& ys) : ctraits::Tpol(0, yp.ny(), pol), ysteady(ys), ypart(yp), nu(nuu)@+ {} DecisionRuleImpl(const _Tg& g, const PartitionY& yp, int nuu, const Vector& ys, double sigma) : ctraits::Tpol(yp.ny(), yp.nys()+nuu), ysteady(ys), ypart(yp), nu(nuu) {@+ fillTensors(g, sigma);@+} DecisionRuleImpl(const DecisionRuleImpl& dr, const ConstVector& fixpoint) : ctraits::Tpol(dr.ypart.ny(), dr.ypart.nys()+dr.nu), ysteady(fixpoint), ypart(dr.ypart), nu(dr.nu) {@+ centralize(dr);@+} const Vector& getSteady() const {@+ return ysteady;@+} @<|DecisionRuleImpl::simulate| code@>; @<|DecisionRuleImpl::evaluate| code@>; @<|DecisionRuleImpl::centralizedClone| code@>; @<|DecisionRuleImpl::writeMat| code@>; int nexog() const {@+ return nu;@+} const PartitionY& getYPart() const {@+ return ypart;} protected:@; @<|DecisionRuleImpl::fillTensors| code@>; @<|DecisionRuleImpl::centralize| code@>; @<|DecisionRuleImpl::eval| code@>; }; @ Here we have to fill the tensor polynomial. This involves two separated actions. First is to evaluate the approximation at a given $\sigma$, the second is to compile the tensors $[g_{{(yu)}^{i+j}}]$ from $[g_{y^iu^j}]$. The first action is done here, the second is done by method |addSubTensor| of a full symmetry tensor. The way how the evaluation is done is described here: The $q-$order approximation to the solution can be written as: $$ \eqalign{ y_t-\bar y &= \sum_{l=1}^q{1\over l!}\left[\sum_{i+j+k=l} \left(\matrix{l\cr i,j,k}\right)\left[g_{y^iu^j\sigma^k}\right] _{\alpha_1\ldots\alpha_j\beta_1\ldots\beta_j} \prod_{m=1}^i[y^*_{t-1}-\bar y^*]^{\alpha_m} \prod_{n=1}^j[u_t]^{\beta_m}\sigma^k\right]\cr &= \sum_{l=1}^q\left[\sum_{i+j\leq l}\left(\matrix{i+j\cr i}\right) \left[\sum_{k=0}^{l-i-j}{1\over l!} \left(\matrix{l\cr k}\right)\left[g_{y^iu^j\sigma^k}\right]\sigma^k\right] \prod_{m=1}^i[y^*_{t-1}-\bar y^*]^{\alpha_m} \prod_{n=1}^j[u_t]^{\beta_m}\sigma^k\right] } $$ This means that for each $i+j+k=l$ we have to add $${1\over l!}\left(\matrix{l\cr k}\right)\left[g_{y^iu^j\sigma^k}\right]\cdot\sigma^k= {1\over (i+j)!k!}\left[g_{y^iu^j\sigma^k}\right]\cdot\sigma^k$$ to $g_{(yu)^{i+j}}$. In addition, note that the multiplier $\left(\matrix{i+j\cr i}\right)$ is applied when the fully symmetric tensor $[g_{(yu)^{i+j}}]$ is evaluated. So we go through $i+j=d=0\ldots q$ and in each loop we form the fully symmetric tensor $[g_{(yu)^l}]$ and insert it to the container. @<|DecisionRuleImpl::fillTensors| code@>= void fillTensors(const _Tg& g, double sigma) { IntSequence tns(2); tns[0] = ypart.nys(); tns[1] = nu; int dfact = 1; for (int d = 0; d <= g.getMaxDim(); d++, dfact*=d) { _Ttensym* g_yud = new _Ttensym(ypart.ny(), ypart.nys()+nu, d); g_yud->zeros(); @; this->insert(g_yud); } } @ Here we have to fill the tensor $\left[g_{(yu)^d}\right]$. So we go through all pairs $(i,j)$ giving $i+j=d$, and through all $k$ from zero up to maximal dimension minus $d$. In this way we go through all symmetries of $g_{y^iu^j\sigma^k}$ which will be added to $g_{(yu)^d}$. Note that at the beginning, |dfact| is a factorial of |d|. We calculate |kfact| is equal to $k!$. As indicated in |@<|DecisionRuleImpl::fillTensors| code@>|, the added tensor is thus multiplied with ${1\over d!k!}\sigma^k$. @= for (int i = 0; i <= d; i++) { int j = d-i; int kfact = 1; _Ttensor tmp(ypart.ny(), TensorDimens(Symmetry(i,j), tns)); tmp.zeros(); for (int k = 0; k+d <= g.getMaxDim(); k++, kfact*=k) { Symmetry sym(i,j,0,k); if (g.check(sym)) { double mult = pow(sigma,k)/dfact/kfact; tmp.add(mult,*(g.get(sym))); } } g_yud->addSubTensor(tmp); } @ The centralization is straightforward. We suppose here that the object's steady state is the fix point $\tilde y$. It is clear that the new derivatives $\left[\tilde g_{(yu)^i}\right]$ will be equal to the derivatives of the original decision rule |dr| at the new steady state $\tilde y$. So, the new derivatives are obtained by derivating the given decision rule $dr$ and evaluating its polynomial at $$dstate=\left[\matrix{\tilde y^*-\bar y^*\cr 0}\right],$$ where $\bar y$ is the steady state of the original rule |dr|. @<|DecisionRuleImpl::centralize| code@>= void centralize(const DecisionRuleImpl& dr) { Vector dstate(ypart.nys() + nu); dstate.zeros(); Vector dstate_star(dstate, 0, ypart.nys()); ConstVector newsteady_star(ysteady, ypart.nstat, ypart.nys()); ConstVector oldsteady_star(dr.ysteady, ypart.nstat, ypart.nys()); dstate_star.add(1.0, newsteady_star); dstate_star.add(-1.0, oldsteady_star); _Tpol pol(dr); int dfac = 1; for (int d = 1; d <= dr.getMaxDim(); d++, dfac *= d) { pol.derivative(d-1); _Ttensym* der = pol.evalPartially(d, dstate); der->mult(1.0/dfac); this->insert(der); } } @ Here we evaluate repeatedly the polynomial storing results in the created matrix. For exogenous shocks, we use |ShockRealization| class, for predetermined variables, we use |ystart| as the first state. The |ystart| vector is required to be all state variables |ypart.ny()|, although only the predetermined part of |ystart| is used. We simulate in terms of $\Delta y$, this is, at the beginning the |ysteady| is canceled from |ystart|, we simulate, and at the end |ysteady| is added to all columns of the result. @<|DecisionRuleImpl::simulate| code@>= TwoDMatrix* simulate(emethod em, int np, const Vector& ystart, ShockRealization& sr) const { KORD_RAISE_IF(ysteady.length() != ystart.length(), "Start and steady lengths differ in DecisionRuleImpl::simulate"); TwoDMatrix* res = new TwoDMatrix(ypart.ny(), np); @; @; @; @; return res; } @ Here allocate the stack vector $(\Delta y^*, u)$, define the subvectors |dy|, and |u|, then we pickup predetermined parts of |ystart| and |ysteady|. @= Vector dyu(ypart.nys()+nu); ConstVector ystart_pred(ystart, ypart.nstat, ypart.nys()); ConstVector ysteady_pred(ysteady, ypart.nstat, ypart.nys()); Vector dy(dyu, 0, ypart.nys()); Vector u(dyu, ypart.nys(), nu); @ We cancel |ysteady| from |ystart|, get realization to |u|, and evaluate the polynomial. @= dy = ystart_pred; dy.add(-1.0, ysteady_pred); sr.get(0, u); Vector out(*res, 0); eval(em, out, dyu); @ Also clear. If the result at some period is not finite, we pad the rest of the matrix with zeros. @= int i=1; while (i < np) { ConstVector ym(*res, i-1); ConstVector dym(ym, ypart.nstat, ypart.nys()); dy = dym; sr.get(i, u); Vector out(*res, i); eval(em, out, dyu); if (! out.isFinite()) { if (i+1 < np) { TwoDMatrix rest(*res, i+1, np-i-1); rest.zeros(); } break; } i++; } @ Even clearer. We add the steady state to the numbers computed above and leave the padded columns to zero. @= for (int j = 0; j < i; j++) { Vector col(*res, j); col.add(1.0, ysteady); } @ This is one period evaluation of the decision rule. The simulation is a sequence of repeated one period evaluations with a difference, that the steady state (fix point) is cancelled and added once. Hence we have two special methods. @<|DecisionRuleImpl::evaluate| code@>= void evaluate(emethod em, Vector& out, const ConstVector& ys, const ConstVector& u) const { KORD_RAISE_IF(ys.length() != ypart.nys() || u.length() != nu, "Wrong dimensions of input vectors in DecisionRuleImpl::evaluate"); KORD_RAISE_IF(out.length() != ypart.ny(), "Wrong dimension of output vector in DecisionRuleImpl::evaluate"); ConstVector ysteady_pred(ysteady, ypart.nstat, ypart.nys()); Vector ys_u(ypart.nys()+nu); Vector ys_u1(ys_u, 0, ypart.nys()); ys_u1 = ys; ys_u1.add(-1.0, ysteady_pred); Vector ys_u2(ys_u, ypart.nys(), nu); ys_u2 = u; eval(em, out, ys_u); out.add(1.0, ysteady); } @ This is easy. We just return the newly created copy using the centralized constructor. @<|DecisionRuleImpl::centralizedClone| code@>= DecisionRule* centralizedClone(const Vector& fixpoint) const { return new DecisionRuleImpl(*this, fixpoint); } @ Here we only encapsulate two implementations to one, deciding according to the parameter. @<|DecisionRuleImpl::eval| code@>= void eval(emethod em, Vector& out, const ConstVector& v) const { if (em == DecisionRule::horner) _Tparent::evalHorner(out, v); else _Tparent::evalTrad(out, v); } @ Write the decision rule and steady state to the MAT file. @<|DecisionRuleImpl::writeMat| code@>= void writeMat(mat_t* fd, const char* prefix) const { ctraits::Tpol::writeMat(fd, prefix); TwoDMatrix dum(ysteady.length(), 1); dum.getData() = ysteady; char tmp[100]; sprintf(tmp, "%s_ss", prefix); ConstTwoDMatrix(dum).writeMat(fd, tmp); } @ This is exactly the same as |DecisionRuleImpl|. The only difference is that we have a conversion from |UnfoldDecisionRule|, which is exactly |DecisionRuleImpl|. @<|FoldDecisionRule| class declaration@>= class UnfoldDecisionRule; class FoldDecisionRule : public DecisionRuleImpl { friend class UnfoldDecisionRule; public:@; FoldDecisionRule(const ctraits::Tpol& pol, const PartitionY& yp, int nuu, const Vector& ys) : DecisionRuleImpl(pol, yp, nuu, ys) {} FoldDecisionRule(ctraits::Tpol& pol, const PartitionY& yp, int nuu, const Vector& ys) : DecisionRuleImpl(pol, yp, nuu, ys) {} FoldDecisionRule(const ctraits::Tg& g, const PartitionY& yp, int nuu, const Vector& ys, double sigma) : DecisionRuleImpl(g, yp, nuu, ys, sigma) {} FoldDecisionRule(const DecisionRuleImpl& dr, const ConstVector& fixpoint) : DecisionRuleImpl(dr, fixpoint) {} FoldDecisionRule(const UnfoldDecisionRule& udr); }; @ This is exactly the same as |DecisionRuleImpl|, but with a conversion from |FoldDecisionRule|, which is exactly |DecisionRuleImpl|. @<|UnfoldDecisionRule| class declaration@>= class UnfoldDecisionRule : public DecisionRuleImpl { friend class FoldDecisionRule; public:@; UnfoldDecisionRule(const ctraits::Tpol& pol, const PartitionY& yp, int nuu, const Vector& ys) : DecisionRuleImpl(pol, yp, nuu, ys) {} UnfoldDecisionRule(ctraits::Tpol& pol, const PartitionY& yp, int nuu, const Vector& ys) : DecisionRuleImpl(pol, yp, nuu, ys) {} UnfoldDecisionRule(const ctraits::Tg& g, const PartitionY& yp, int nuu, const Vector& ys, double sigma) : DecisionRuleImpl(g, yp, nuu, ys, sigma) {} UnfoldDecisionRule(const DecisionRuleImpl& dr, const ConstVector& fixpoint) : DecisionRuleImpl(dr, fixpoint) {} UnfoldDecisionRule(const FoldDecisionRule& udr); }; @ This class serves for calculation of the fix point of the decision rule given that the shocks are zero. The class is very similar to the |DecisionRuleImpl|. Besides the calculation of the fix point, the only difference between |DRFixPoint| and |DecisionRuleImpl| is that the derivatives wrt. shocks are ignored (since shocks are zero during the calculations). That is why have a different |fillTensor| method. The solution algorithm is Newton and is described in |@<|DRFixPoint::solveNewton| code@>|. It solves $F(y)=0$, where $F=g(y,0)-y$. The function $F$ is given by its derivatives |bigf|. The Jacobian of the solved system is given by derivatives stored in |bigfder|. @<|DRFixPoint| class declaration@>= template class DRFixPoint : public ctraits::Tpol { typedef typename ctraits::Tpol _Tparent; static int max_iter; static int max_newton_iter; static int newton_pause; static double tol; const Vector ysteady; const PartitionY ypart; _Tparent* bigf; _Tparent* bigfder; public:@; typedef typename DecisionRule::emethod emethod; @<|DRFixPoint| constructor code@>; @<|DRFixPoint| destructor code@>; @<|DRFixPoint::calcFixPoint| code@>; int getNumIter() const {@+ return iter;@+} int getNewtonLastIter() const {@+ return newton_iter_last;@+} int getNewtonTotalIter() const {@+ return newton_iter_total;@+} protected:@; @<|DRFixPoint::fillTensors| code@>; @<|DRFixPoint::solveNewton| code@>; private:@; int iter; int newton_iter_last; int newton_iter_total; }; @ Here we have to setup the function $F=g(y,0)-y$ and ${\partial F\over\partial y}$. The former is taken from the given derivatives of $g$ where a unit matrix is subtracted from the first derivative (|Symmetry(1)|). Then the derivative of the $F$ polynomial is calculated. @<|DRFixPoint| constructor code@>= DRFixPoint(const _Tg& g, const PartitionY& yp, const Vector& ys, double sigma) : ctraits::Tpol(yp.ny(), yp.nys()), ysteady(ys), ypart(yp), bigf(NULL), bigfder(NULL) { fillTensors(g, sigma); _Tparent yspol(ypart.nstat, ypart.nys(), *this); bigf = new _Tparent((const _Tparent&) yspol); _Ttensym* frst = bigf->get(Symmetry(1)); for (int i = 0; i < ypart.nys(); i++) frst->get(i,i) = frst->get(i,i) - 1; bigfder = new _Tparent(*bigf, 0); } @ @<|DRFixPoint| destructor code@>= virtual ~DRFixPoint() { if (bigf) delete bigf; if (bigfder) delete bigfder; } @ Here we fill the tensors for the |DRFixPoint| class. We ignore the derivatives $g_{y^iu^j\sigma^k}$ for which $j>0$. So we go through all dimensions |d|, and all |k| such that |d+k| is between the maximum dimension and |d|, and add ${\sigma^k\over d!k!}g_{y^d\sigma^k}$ to the tensor $g_{(y)^d}$. @<|DRFixPoint::fillTensors| code@>= void fillTensors(const _Tg& g, double sigma) { int dfact = 1; for (int d = 0; d <= g.getMaxDim(); d++, dfact*=d) { _Ttensym* g_yd = new _Ttensym(ypart.ny(), ypart.nys(), d); g_yd->zeros(); int kfact = 1; for (int k = 0; d+k <= g.getMaxDim(); k++, kfact*=k) { if (g.check(Symmetry(d,0,0,k))) { const _Ttensor* ten = g.get(Symmetry(d,0,0,k)); double mult = pow(sigma,k)/dfact/kfact; g_yd->add(mult, *ten); } } this->insert(g_yd); } } @ This tries to solve polynomial equation $F(y)=0$, where $F$ polynomial is |bigf| and its derivative is in |bigfder|. It returns true if the Newton converged. The method takes the given vector as initial guess, and rewrites it with a solution. The method guarantees to return the vector, which has smaller norm of the residual. That is why the input/output vector |y| is always changed. The method proceeds with a Newton step, if the Newton step improves the residual error. So we track residual errors in |flastnorm| and |fnorm| (former and current). In addition, at each step we search for an underrelaxation parameter |urelax|, which improves the residual. If |urelax| is less that |urelax_threshold|, we stop searching and stop the Newton. @<|DRFixPoint::solveNewton| code@>= bool solveNewton(Vector& y) { const double urelax_threshold = 1.e-5; Vector sol((const Vector&) y); Vector delta(y.length()); newton_iter_last = 0; bool delta_finite = true; double flastnorm = 0.0; double fnorm = 0.0; bool converged = false; double urelax = 1.0; do { _Ttensym* jacob = bigfder->evalPartially(1, sol); bigf->evalHorner(delta, sol); if (newton_iter_last == 0) flastnorm = delta.getNorm(); delta_finite = delta.isFinite(); if (delta_finite) { ConstTwoDMatrix(*jacob).multInvLeft(delta); @; sol.add(-urelax, delta); delta_finite = delta.isFinite(); } delete jacob; newton_iter_last++; converged = delta_finite && fnorm < tol; flastnorm = fnorm; } while (!converged && newton_iter_last < max_newton_iter && urelax > urelax_threshold); newton_iter_total += newton_iter_last; if (! converged) newton_iter_last = 0; y = (const Vector&)sol; return converged; } @ Here we find the |urelax|. We cycle as long as the new residual size |fnorm| is greater than last residual size |flastnorm|. If the urelax is less than |urelax_threshold| we give up. The |urelax| is damped by the ratio of |flastnorm| and |fnorm|. It the ratio is close to one, we damp by one half. @= bool urelax_found = false; urelax = 1.0; while (!urelax_found && urelax > urelax_threshold) { Vector soltmp((const Vector&)sol); soltmp.add(-urelax, delta); Vector f(sol.length()); bigf->evalHorner(f, soltmp); fnorm = f.getNorm(); if (fnorm <= flastnorm) urelax_found = true; else urelax *= std::min(0.5, flastnorm/fnorm); } @ This method solves the fix point of the no-shocks rule $y_{t+1}=f(y_t)$. It combines dull steps with Newton attempts. The dull steps correspond to evaluations setting $y_{t+1}=f(y_t)$. For reasonable models the dull steps converge to the fix-point but very slowly. That is why we make Newton attempt from time to time. The frequency of the Newton attempts is given by |newton_pause|. We perform the calculations in deviations from the steady state. So, at the end, we have to add the steady state. The method also sets the members |iter|, |newton_iter_last| and |newton_iter_total|. These numbers can be examined later. The |out| vector is not touched if the algorithm has not convered. @<|DRFixPoint::calcFixPoint| code@>= bool calcFixPoint(emethod em, Vector& out) { KORD_RAISE_IF(out.length() != ypart.ny(), "Wrong length of out in DRFixPoint::calcFixPoint"); Vector delta(ypart.nys()); Vector ystar(ypart.nys()); ystar.zeros(); iter = 0; newton_iter_last = 0; newton_iter_total = 0; bool converged = false; do { if ((iter/newton_pause)*newton_pause == iter) converged = solveNewton(ystar); if (! converged) { bigf->evalHorner(delta, ystar); KORD_RAISE_IF_X(! delta.isFinite(), "NaN or Inf asserted in DRFixPoint::calcFixPoint", KORD_FP_NOT_FINITE); ystar.add(1.0, delta); converged = delta.getNorm() < tol; } iter++; } while (iter < max_iter && ! converged); if (converged) { _Tparent::evalHorner(out, ystar); out.add(1.0, ysteady); } return converged; } @ This is a basically a number of matrices of the same dimensions, which can be obtained as simulation results from a given decision rule and shock realizations. We also store the realizations of shocks. @<|SimResults| class declaration@>= class ExplicitShockRealization; class SimResults { protected:@; int num_y; int num_per; int num_burn; vector data; vector shocks; public:@; SimResults(int ny, int nper, int nburn = 0) : num_y(ny), num_per(nper), num_burn(nburn)@+ {} virtual ~SimResults(); void simulate(int num_sim, const DecisionRule& dr, const Vector& start, const TwoDMatrix& vcov, Journal& journal); void simulate(int num_sim, const DecisionRule& dr, const Vector& start, const TwoDMatrix& vcov); int getNumPer() const {@+ return num_per;@+} int getNumBurn() const {@+ return num_burn;@+} int getNumSets() const {@+ return (int)data.size();@+} const TwoDMatrix& getData(int i) const {@+ return *(data[i]);@+} const ExplicitShockRealization& getShocks(int i) const { @+ return *(shocks[i]);@+} bool addDataSet(TwoDMatrix* d, ExplicitShockRealization* sr); void writeMat(const char* base, const char* lname) const; void writeMat(mat_t* fd, const char* lname) const; }; @ This does the same as |SimResults| plus it calculates means and covariances of the simulated data. @<|SimResultsStats| class declaration@>= class SimResultsStats : public SimResults { protected:@; Vector mean; TwoDMatrix vcov; public:@; SimResultsStats(int ny, int nper, int nburn = 0) : SimResults(ny, nper, nburn), mean(ny), vcov(ny,ny)@+ {} void simulate(int num_sim, const DecisionRule& dr, const Vector& start, const TwoDMatrix& vcov, Journal& journal); void writeMat(mat_t* fd, const char* lname) const; protected:@; void calcMean(); void calcVcov(); }; @ This does the similar thing as |SimResultsStats| but the statistics are not calculated over all periods but only within each period. Then we do not calculate covariances with periods but only variances. @<|SimResultsDynamicStats| class declaration@>= class SimResultsDynamicStats : public SimResults { protected:@; TwoDMatrix mean; TwoDMatrix variance; public:@; SimResultsDynamicStats(int ny, int nper, int nburn = 0) : SimResults(ny, nper, nburn), mean(ny,nper), variance(ny,nper)@+ {} void simulate(int num_sim, const DecisionRule& dr, const Vector& start, const TwoDMatrix& vcov, Journal& journal); void writeMat(mat_t* fd, const char* lname) const; protected:@; void calcMean(); void calcVariance(); }; @ This goes through control simulation results, and for each control it adds a given impulse to a given shock and runs a simulation. The control simulation is then cancelled and the result is stored. After that these results are averaged with variances calculated. The means and the variances are then written to the MAT-4 file. @<|SimResultsIRF| class declaration@>= class SimulationIRFWorker; class SimResultsIRF : public SimResults { friend class SimulationIRFWorker; protected:@; const SimResults& control; int ishock; double imp; TwoDMatrix means; TwoDMatrix variances; public:@; SimResultsIRF(const SimResults& cntl, int ny, int nper, int i, double impulse) : SimResults(ny, nper, 0), control(cntl), ishock(i), imp(impulse), means(ny, nper), variances(ny, nper)@+ {} void simulate(const DecisionRule& dr, Journal& journal); void simulate(const DecisionRule& dr); void writeMat(mat_t* fd, const char* lname) const; protected:@; void calcMeans(); void calcVariances(); }; @ This simulates and gathers all statistics from the real time simulations. In the |simulate| method, it runs |RTSimulationWorker|s which accummulate information from their own estimates. The estimation is done by means of |NormalConj| class, which is a conjugate family of densities for normal distibutions. @<|RTSimResultsStats| class declaration@>= class RTSimulationWorker; class RTSimResultsStats { friend class RTSimulationWorker; protected:@; Vector mean; TwoDMatrix vcov; int num_per; int num_burn; NormalConj nc; int incomplete_simulations; int thrown_periods; public:@; RTSimResultsStats(int ny, int nper, int nburn = 0) : mean(ny), vcov(ny, ny), num_per(nper), num_burn(nburn), nc(ny), incomplete_simulations(0), thrown_periods(0)@+ {} void simulate(int num_sim, const DecisionRule& dr, const Vector& start, const TwoDMatrix& vcov, Journal& journal); void simulate(int num_sim, const DecisionRule& dr, const Vector& start, const TwoDMatrix& vcov); void writeMat(mat_t* fd, const char* lname); }; @ For each shock, this simulates plus and minus impulse. The class maintains a vector of simulation results, each gets a particular shock and sign (positive/negative). The results of type |SimResultsIRF| are stored in a vector so that even ones are positive, odd ones are negative. The constructor takes a reference to the control simulations, which must be finished before the constructor is called. The control simulations are passed to all |SimResultsIRF|s. The constructor also takes the vector of indices of exogenous variables (|ili|) for which the IRFs are generated. The list is kept (as |irf_list_ind|) for other methods. @<|IRFResults| class declaration@>= class DynamicModel; class IRFResults { vector irf_res; const DynamicModel& model; vector irf_list_ind; public:@; IRFResults(const DynamicModel& mod, const DecisionRule& dr, const SimResults& control, const vector& ili, Journal& journal); ~IRFResults(); void writeMat(mat_t* fd, const char* prefix) const; }; @ This worker simulates the given decision rule and inserts the result to |SimResults|. @<|SimulationWorker| class declaration@>= class SimulationWorker : public THREAD { protected:@; SimResults& res; const DecisionRule& dr; DecisionRule::emethod em; int np; const Vector& st; ShockRealization& sr; public:@; SimulationWorker(SimResults& sim_res, const DecisionRule& dec_rule, DecisionRule::emethod emet, int num_per, const Vector& start, ShockRealization& shock_r) : res(sim_res), dr(dec_rule), em(emet), np(num_per), st(start), sr(shock_r) {} void operator()(); }; @ This worker simulates a given impulse |imp| to a given shock |ishock| based on a given control simulation with index |idata|. The control simulations are contained in |SimResultsIRF| which is passed to the constructor. @<|SimulationIRFWorker| class declaration@>= class SimulationIRFWorker : public THREAD { SimResultsIRF& res; const DecisionRule& dr; DecisionRule::emethod em; int np; int idata; int ishock; double imp; public:@; SimulationIRFWorker(SimResultsIRF& sim_res, const DecisionRule& dec_rule, DecisionRule::emethod emet, int num_per, int id, int ishck, double impulse) : res(sim_res), dr(dec_rule), em(emet), np(num_per), idata(id), ishock(ishck), imp(impulse)@+ {} void operator()(); }; @ This class does the real time simulation job for |RTSimResultsStats|. It simulates the model period by period. It accummulates the information in the |RTSimResultsStats::nc|. If NaN or Inf is observed, it ends the simulation and adds to the |thrown_periods| of |RTSimResultsStats|. @<|RTSimulationWorker| class declaration@>= class RTSimulationWorker : public THREAD { protected:@; RTSimResultsStats& res; const DecisionRule& dr; DecisionRule::emethod em; int np; const Vector& ystart; ShockRealization& sr; public:@; RTSimulationWorker(RTSimResultsStats& sim_res, const DecisionRule& dec_rule, DecisionRule::emethod emet, int num_per, const Vector& start, ShockRealization& shock_r) : res(sim_res), dr(dec_rule), em(emet), np(num_per), ystart(start), sr(shock_r) {} void operator()(); }; @ This class generates draws from Gaussian distribution with zero mean and the given variance-covariance matrix. It stores the factor of vcov $V$ matrix, yielding $FF^T = V$. @<|RandomShockRealization| class declaration@>= class RandomShockRealization : virtual public ShockRealization { protected:@; MersenneTwister mtwister; TwoDMatrix factor; public:@; RandomShockRealization(const TwoDMatrix& v, unsigned int iseed) : mtwister(iseed), factor(v.nrows(),v.nrows()) {@+schurFactor(v);@+} RandomShockRealization(const RandomShockRealization& sr) : mtwister(sr.mtwister), factor(sr.factor)@+ {} virtual ~RandomShockRealization() @+{} void get(int n, Vector& out); int numShocks() const {@+ return factor.nrows();@+} protected:@; void choleskyFactor(const TwoDMatrix& v); void schurFactor(const TwoDMatrix& v); }; @ This is just a matrix of finite numbers. It can be constructed from any |ShockRealization| with a given number of periods. @<|ExplicitShockRealization| class declaration@>= class ExplicitShockRealization : virtual public ShockRealization { TwoDMatrix shocks; public:@; ExplicitShockRealization(const TwoDMatrix& sh) : shocks(sh)@+ {} ExplicitShockRealization(const ConstTwoDMatrix& sh) : shocks(sh)@+ {} ExplicitShockRealization(const ExplicitShockRealization& sr) : shocks(sr.shocks)@+ {} ExplicitShockRealization(ShockRealization& sr, int num_per); void get(int n, Vector& out); int numShocks() const {@+ return shocks.nrows();@+} const TwoDMatrix& getShocks() {@+ return shocks;@+} void addToShock(int ishock, int iper, double val); void print() const {@+ shocks.print();@+} }; @ This represents a user given shock realization. The first matrix of the constructor is a covariance matrix of shocks, the second matrix is a rectangular matrix, where columns correspond to periods, rows to shocks. If an element of the matrix is {\tt NaN}, or {\tt Inf}, or {\tt -Inf}, then the random shock is taken instead of that element. In this way it is a generalization of both |RandomShockRealization| and |ExplicitShockRealization|. @<|GenShockRealization| class declaration@>= class GenShockRealization : public RandomShockRealization, public ExplicitShockRealization { public:@; GenShockRealization(const TwoDMatrix& v, const TwoDMatrix& sh, int seed) : RandomShockRealization(v, seed), ExplicitShockRealization(sh)@+ { KORD_RAISE_IF(sh.nrows() != v.nrows() || v.nrows() != v.ncols(), "Wrong dimension of input matrix in GenShockRealization constructor"); } void get(int n, Vector& out); int numShocks() const {@+ return RandomShockRealization::numShocks();@+} }; @ End of {\tt decision\_rule.h} file.