function dr = dyn_second_order_solver(jacobia,hessian_mat,dr,M_,threads_ABC,threads_BC) %@info: %! @deftypefn {Function File} {@var{dr} =} dyn_second_order_solver (@var{jacobia},@var{hessian_mat},@var{dr},@var{M_},@var{threads_ABC},@var{threads_BC}) %! @anchor{dyn_second_order_solver} %! @sp 1 %! Computes the second order reduced form of the DSGE model %! @sp 2 %! @strong{Inputs} %! @sp 1 %! @table @ @var %! @item jacobia %! Matrix containing the Jacobian of the model %! @item hessian_mat %! Matrix containing the second order derivatives of the model %! @item dr %! Matlab's structure describing the reduced form solution of the model. %! @item M_ %! Matlab's structure describing the model (initialized by @code{dynare}). %! @item threads_ABC %! Integer controlling number of threads in A_times_B_kronecker_C %! @item threads_BC %! Integer controlling number of threads in sparse_hessian_times_B_kronecker_C %! @end table %! @sp 2 %! @strong{Outputs} %! @sp 1 %! @table @ @var %! @item dr %! Matlab's structure describing the reduced form solution of the model. %! @end table %! @end deftypefn %@eod: % Copyright (C) 2001-2017 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . dr.ghxx = []; dr.ghuu = []; dr.ghxu = []; dr.ghs2 = []; Gy = dr.Gy; kstate = dr.kstate; nstatic = M_.nstatic; nfwrd = M_.nfwrd; nspred = M_.nspred; nboth = M_.nboth; nsfwrd = M_.nsfwrd; order_var = dr.order_var; nd = size(kstate,1); lead_lag_incidence = M_.lead_lag_incidence; np = nd - nsfwrd; k1 = nonzeros(lead_lag_incidence(:,order_var)'); kk = [k1; length(k1)+(1:M_.exo_nbr+M_.exo_det_nbr)']; nk = size(kk,1); kk1 = reshape([1:nk^2],nk,nk); kk1 = kk1(kk,kk); % reordering second order derivatives hessian_mat = hessian_mat(:,kk1(:)); zx = zeros(np,np); zu=zeros(np,M_.exo_nbr); zx(1:np,:)=eye(np); k0 = [1:M_.endo_nbr]; gx1 = dr.ghx; hu = dr.ghu(nstatic+[1:nspred],:); k0 = find(lead_lag_incidence(M_.maximum_endo_lag+1,order_var)'); zx = [zx; gx1(k0,:)]; zu = [zu; dr.ghu(k0,:)]; k1 = find(lead_lag_incidence(M_.maximum_endo_lag+2,order_var)'); zu = [zu; gx1(k1,:)*hu]; zx = [zx; gx1(k1,:)*Gy]; zx=[zx; zeros(M_.exo_nbr,np);zeros(M_.exo_det_nbr,np)]; zu=[zu; eye(M_.exo_nbr);zeros(M_.exo_det_nbr,M_.exo_nbr)]; [nrzx,nczx] = size(zx); [rhs, err] = sparse_hessian_times_B_kronecker_C(hessian_mat,zx,threads_BC); mexErrCheck('sparse_hessian_times_B_kronecker_C', err); rhs = -rhs; %lhs n = M_.endo_nbr+sum(kstate(:,2) > M_.maximum_endo_lag+1 & kstate(:,2) < M_.maximum_endo_lag+M_.maximum_endo_lead+1); A = zeros(M_.endo_nbr,M_.endo_nbr); B = zeros(M_.endo_nbr,M_.endo_nbr); A(:,k0) = jacobia(:,nonzeros(lead_lag_incidence(M_.maximum_endo_lag+1,order_var))); % variables with the highest lead k1 = find(kstate(:,2) == M_.maximum_endo_lag+2); % Jacobian with respect to the variables with the highest lead fyp = jacobia(:,kstate(k1,3)+nnz(M_.lead_lag_incidence(M_.maximum_endo_lag+1,:))); B(:,nstatic+M_.npred+1:end) = fyp; [junk,k1,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+M_.maximum_endo_lead+1,order_var)); A(1:M_.endo_nbr,nstatic+1:nstatic+nspred)=... A(1:M_.endo_nbr,nstatic+[1:nspred])+fyp*gx1(k1,1:nspred); C = Gy; D = [rhs; zeros(n-M_.endo_nbr,size(rhs,2))]; [err, dr.ghxx] = gensylv(2,A,B,C,D); mexErrCheck('gensylv', err); %ghxu %rhs hu = dr.ghu(nstatic+1:nstatic+nspred,:); [rhs, err] = sparse_hessian_times_B_kronecker_C(hessian_mat,zx,zu,threads_BC); mexErrCheck('sparse_hessian_times_B_kronecker_C', err); hu1 = [hu;zeros(np-nspred,M_.exo_nbr)]; [nrhx,nchx] = size(Gy); [nrhu1,nchu1] = size(hu1); [abcOut,err] = A_times_B_kronecker_C(dr.ghxx,Gy,hu1,threads_ABC); mexErrCheck('A_times_B_kronecker_C', err); B1 = B*abcOut; rhs = -[rhs; zeros(n-M_.endo_nbr,size(rhs,2))]-B1; %lhs dr.ghxu = A\rhs; %ghuu %rhs [rhs, err] = sparse_hessian_times_B_kronecker_C(hessian_mat,zu,threads_BC); mexErrCheck('sparse_hessian_times_B_kronecker_C', err); [B1, err] = A_times_B_kronecker_C(B*dr.ghxx,hu1,threads_ABC); mexErrCheck('A_times_B_kronecker_C', err); rhs = -[rhs; zeros(n-M_.endo_nbr,size(rhs,2))]-B1; %lhs dr.ghuu = A\rhs; % dr.ghs2 % derivatives of F with respect to forward variables % reordering predetermined variables in diminishing lag order O1 = zeros(M_.endo_nbr,nstatic); O2 = zeros(M_.endo_nbr,M_.endo_nbr-nstatic-nspred); LHS = zeros(M_.endo_nbr,M_.endo_nbr); LHS(:,k0) = jacobia(:,nonzeros(lead_lag_incidence(M_.maximum_endo_lag+1,order_var))); RHS = zeros(M_.endo_nbr,M_.exo_nbr^2); gu = dr.ghu; guu = dr.ghuu; E = eye(M_.endo_nbr); kh = reshape([1:nk^2],nk,nk); kp = sum(kstate(:,2) <= M_.maximum_endo_lag+1); E1 = [eye(nspred); zeros(kp-nspred,nspred)]; H = E1; hxx = dr.ghxx(nstatic+[1:nspred],:); [junk,k2a,k2] = find(M_.lead_lag_incidence(M_.maximum_endo_lag+2,order_var)); k3 = nnz(M_.lead_lag_incidence(1:M_.maximum_endo_lag+1,:))+(1:M_.nsfwrd)'; [B1, err] = sparse_hessian_times_B_kronecker_C(hessian_mat(:,kh(k3,k3)),gu(k2a,:),threads_BC); mexErrCheck('sparse_hessian_times_B_kronecker_C', err); RHS = RHS + jacobia(:,k2)*guu(k2a,:)+B1; % LHS LHS = LHS + jacobia(:,k2)*(E(k2a,:)+[O1(k2a,:) dr.ghx(k2a,:)*H O2(k2a,:)]); RHS = RHS*M_.Sigma_e(:); dr.fuu = RHS; %RHS = -RHS-dr.fbias; RHS = -RHS; dr.ghs2 = LHS\RHS; % deterministic exogenous variables if M_.exo_det_nbr > 0 end