function oo_ = covariance_mc_analysis(NumberOfSimulations,type,dname,fname,vartan,nvar,var1,var2,mh_conf_sig,oo_,options_) % This function analyses the (posterior or prior) distribution of the % endogenous variables' covariance matrix. % % INPUTS % NumberOfSimulations [integer] scalar, number of simulations. % type [string] 'prior' or 'posterior' % dname [string] directory name where to save % fname [string] name of the mod-file % vartan [char] array of characters (with nvar rows). % nvar [integer] nvar is the number of stationary variables. % var1 [string] name of the first variable % var2 [string] name of the second variable % mh_conf_sig [double] 2 by 1 vector with upper % and lower bound of HPD intervals % oo_ [structure] Dynare structure where the results are saved. % options_ [structure] Dynare options structure % % OUTPUTS % oo_ [structure] Dynare structure where the results are saved. % Copyright (C) 2008-2017 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . if strcmpi(type,'posterior') TYPE = 'Posterior'; PATH = [dname '/metropolis/']; else TYPE = 'Prior'; PATH = [dname '/prior/moments/']; end indx1 = check_name(vartan,var1); if isempty(indx1) disp([ type '_analysis:: ' var1 ' is not a stationary endogenous variable!']) return end if ~isempty(var2) indx2 = check_name(vartan,var2); if isempty(indx2) disp([ type '_analysis:: ' var2 ' is not a stationary endogenous variable!']) return end else indx2 = indx1; var2 = var1; end var1=deblank(var1); var2=deblank(var2); if isfield(oo_,[ TYPE 'TheoreticalMoments']) temporary_structure = oo_.([TYPE, 'TheoreticalMoments']); if isfield(temporary_structure,'dsge') temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge; if isfield(temporary_structure,'covariance') temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean; if isfield(temporary_structure,var1) temporary_structure_1 = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var1); if isfield(temporary_structure_1,var2) % Nothing to do (the covariance matrix is symmetric!). return end else if isfield(temporary_structure,var2) temporary_structure_2 = oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var2); if isfield(temporary_structure_2,var1) % Nothing to do (the covariance matrix is symmetric!). return end end end end end end ListOfFiles = dir([ PATH fname '_' TYPE '2ndOrderMoments*.mat']); i1 = 1; tmp = zeros(NumberOfSimulations,1); if options_.contemporaneous_correlation tmp_corr_mat = zeros(NumberOfSimulations,1); cov_pos=symmetric_matrix_index(indx1,indx2,nvar); var_pos_1=symmetric_matrix_index(indx1,indx1,nvar); var_pos_2=symmetric_matrix_index(indx2,indx2,nvar); end for file = 1:length(ListOfFiles) load([ PATH ListOfFiles(file).name ]); i2 = i1 + rows(Covariance_matrix) - 1; tmp(i1:i2) = Covariance_matrix(:,symmetric_matrix_index(indx1,indx2,nvar)); if options_.contemporaneous_correlation temp=Covariance_matrix(:,cov_pos)./(sqrt(Covariance_matrix(:,var_pos_1)).*sqrt(Covariance_matrix(:,var_pos_2))); temp(Covariance_matrix(:,cov_pos)==0)=0; %filter out 0 correlations that would result in 0/0 tmp_corr_mat(i1:i2)=temp; end i1 = i2+1; end if options_.estimation.moments_posterior_density.indicator [p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ... posterior_moments(tmp,1,mh_conf_sig); oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.density.(var1).(var2) = density; else [p_mean, p_median, p_var, hpd_interval, p_deciles] = ... posterior_moments(tmp,0,mh_conf_sig); end oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Mean.(var1).(var2) = p_mean; oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Median.(var1).(var2) = p_median; oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.Variance.(var1).(var2) = p_var; oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.HPDinf.(var1).(var2) = hpd_interval(1); oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.HPDsup.(var1).(var2) = hpd_interval(2); oo_.([TYPE, 'TheoreticalMoments']).dsge.covariance.deciles.(var1).(var2) = p_deciles; if options_.contemporaneous_correlation if options_.estimation.moments_posterior_density.indicator [p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ... posterior_moments(tmp_corr_mat,1,mh_conf_sig); oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.density.(var1).(var2) = density; else [p_mean, p_median, p_var, hpd_interval, p_deciles] = ... posterior_moments(tmp_corr_mat,0,mh_conf_sig); end oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Mean.(var1).(var2) = p_mean; oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Median.(var1).(var2) = p_median; oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.Variance.(var1).(var2) = p_var; oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.HPDinf.(var1).(var2) = hpd_interval(1); oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.HPDsup.(var1).(var2) = hpd_interval(2); oo_.([TYPE, 'TheoreticalMoments']).dsge.contemporeaneous_correlation.deciles.(var1).(var2) = p_deciles; end