function hessian_mat = penalty_hessian(func,x,penalty,gstep,varargin) % --*-- Unitary tests --*-- % Computes second order partial derivatives with penalty_objective_function % % INPUTS % func [string] name of the function % x [double] vector, the Hessian of "func" is evaluated at x. % penalty [double] penalty base used if function fails % gstep [double] scalar, size of epsilon. % varargin [void] list of additional arguments for "func". % % OUTPUTS % hessian_mat [double] Hessian matrix % % ALGORITHM % Uses Abramowitz and Stegun (1965) formulas 25.3.23 % \[ % \frac{\partial^2 f_{0,0}}{\partial {x^2}} = \frac{1}{h^2}\left( f_{1,0} - 2f_{0,0} + f_{ - 1,0} \right) % \] % and 25.3.27 p. 884 % % \[ % \frac{\partial ^2f_{0,0}}{\partial x\partial y} = \frac{-1}{2h^2}\left(f_{1,0} + f_{-1,0} + f_{0,1} + f_{0,-1} - 2f_{0,0} - f_{1,1} - f_{-1,-1} \right) % \] % % SPECIAL REQUIREMENTS % none % % Copyright (C) 2001-2014 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . if ~isa(func, 'function_handle') func = str2func(func); end n=size(x,1); h1=max(abs(x),sqrt(gstep(1))*ones(n,1))*eps^(1/6)*gstep(2); h_1=h1; xh1=x+h1; h1=xh1-x; xh1=x-h_1; h_1=x-xh1; xh1=x; f0=penalty_objective_function(x,func,penalty,varargin{:}); f1=zeros(size(f0,1),n); f_1=f1; for i=1:n %do step up xh1(i)=x(i)+h1(i); f1(:,i)=penalty_objective_function(xh1,func,penalty,varargin{:}); %do step up xh1(i)=x(i)-h_1(i); f_1(:,i)=penalty_objective_function(xh1,func,penalty,varargin{:}); xh1(i)=x(i);%reset parameter end xh_1=xh1; hessian_mat = zeros(size(f0,1),n*n); temp=f1+f_1-f0*ones(1,n); %term f_(1,0)+f_(-1,0)-f_(0,0) used later for i=1:n if i > 1 %fill symmetric part of Hessian based on previously computed results k=[i:n:n*(i-1)]; hessian_mat(:,(i-1)*n+1:(i-1)*n+i-1)=hessian_mat(:,k); end hessian_mat(:,(i-1)*n+i)=(f1(:,i)+f_1(:,i)-2*f0)./(h1(i)*h_1(i)); %formula 25.3.23 for j=i+1:n %step in up direction xh1(i)=x(i)+h1(i); xh1(j)=x(j)+h_1(j); %step in down direction xh_1(i)=x(i)-h1(i); xh_1(j)=x(j)-h_1(j); hessian_mat(:,(i-1)*n+j)=-(-penalty_objective_function(xh1,func,penalty,varargin{:})-penalty_objective_function(xh_1,func,penalty,varargin{:})+temp(:,i)+temp(:,j))./(2*h1(i)*h_1(j)); %formula 25.3.27 %reset grid points xh1(i)=x(i); xh1(j)=x(j); xh_1(i)=x(i); xh_1(j)=x(j); end end