function [g,badg] = fn_a0freegrad(b,Ui,nvar,n0,fss,H0inv) % [g,badg] = a0freegrad(b,Ui,nvar,n0,fss,H0inv) % Analytical gradient for a0freefun.m in use of csminwel.m. See Dhrymes's book. % % b: sum(n0)-by-1 vector of A0 free parameters % Ui: nvar-by-1 cell. In each cell, nvar-by-qi orthonormal basis for the null of the ith % equation contemporaneous restriction matrix where qi is the number of free parameters. % With this transformation, we have ai = Ui*bi or Ui'*ai = bi where ai is a vector % of total original parameters and bi is a vector of free parameters. When no % restrictions are imposed, we have Ui = I. There must be at least one free % parameter left for the ith equation. % nvar: number of endogeous variables % n0: nvar-by-1, ith element represents the number of free A0 parameters in ith equation % fss: nSample-lags (plus ndobs if dummies are included) % H0inv: cell(nvar,1). In each cell, posterior inverse of covariance inv(H0) for the ith equation, % resembling old SpH in the exponent term in posterior of A0, but not divided by T yet. %--------------- % g: sum(n0)-by-1 analytical gradient for a0freefun.m % badg: 0, the value that is used in csminwel.m % % Tao Zha, February 2000. Revised, August 2000 b=b(:); n0 = n0(:); A0 = zeros(nvar); n0cum = [0;cumsum(n0)]; g = zeros(n0cum(end),1); badg = 0; %*** The derivative of the exponential term w.r.t. each free paramater for kj = 1:nvar bj = b(n0cum(kj)+1:n0cum(kj+1)); g(n0cum(kj)+1:n0cum(kj+1)) = H0inv{kj}*bj; A0(:,kj) = Ui{kj}*bj; end B=inv(A0'); %*** Add the derivative of -Tlog|A0| w.r.t. each free paramater for ki = 1:sum(n0) n = max(find( (ki-n0cum)>0 )); % note, 1<=n<=nvar g(ki) = g(ki) - fss*B(:,n)'*Ui{n}(:,ki-n0cum(n)); end