function time_series = extended_path(initial_conditions,sample_size,init) % Stochastic simulation of a non linear DSGE model using the Extended Path method (Fair and Taylor 1983). A time % series of size T is obtained by solving T perfect foresight models. % % INPUTS % o initial_conditions [double] m*nlags array, where m is the number of endogenous variables in the model and % nlags is the maximum number of lags. % o sample_size [integer] scalar, size of the sample to be simulated. % % OUTPUTS % o time_series [double] m*sample_size array, the simulations. % % ALGORITHM % % SPECIAL REQUIREMENTS % Copyright (C) 2009 Dynare Team % % This file is part of Dynare. % % Dynare is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % Dynare is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Dynare. If not, see . global M_ oo_ options_ % Set default initial conditions. if isempty(initial_conditions) initial_conditions = repmat(oo_.steady_state,1,M_.maximum_lag); end % Copy sample_size to periods. options_.periods = sample_size; % Initialize the exogenous variables. make_ex_; % Initialize the endogenous variables. make_y_; % Initialize the output array. time_series = NaN(M_.endo_nbr,sample_size+1); % Set the covariance matrix of the structural innovations. variances = diag(M_.Sigma_e); positive_var_indx = find(variances>0); covariance_matrix = M_.Sigma_e(positive_var_indx,positive_var_indx); number_of_structural_innovations = length(covariance_matrix); covariance_matrix_upper_cholesky = chol(covariance_matrix); tdx = M_.maximum_lag+1; norme = 0; % Set verbose option verbose = 0; for t=1:sample_size shocks = exp(randn(1,number_of_structural_innovations)*covariance_matrix_upper_cholesky-.5*variances(positive_var_indx)'); oo_.exo_simul(tdx,positive_var_indx) = shocks; info = perfect_foresight_simulation; time = info.time; if verbose t info end if ~info.convergence info = homotopic_steps(tdx,positive_var_indx,shocks,norme,.2); if verbose norme info end else norme = sqrt(sum((shocks-1).^2,2)); end if ~info.convergence error('I am not able to simulate this model!') end info.time = info.time+time; time_series(:,t+1) = oo_.endo_simul(:,tdx); oo_.endo_simul(:,1:end-1) = oo_.endo_simul(:,2:end); oo_.endo_simul(:,end) = oo_.steady_state; end function info = homotopic_steps(tdx,positive_var_indx,shocks,init_weight,step) global oo_ weight = init_weight; verbose = 0; iter = 0; time = 0; reduce_step = 0; while iter<=100 && weight<=1 iter = iter+1; old_weight = weight; weight = weight+step; oo_.exo_simul(tdx,positive_var_indx) = weight*shocks+(1-weight); info = perfect_foresight_simulation; time = time+info.time; if verbose [iter,step] [info.iterations.time,info.iterations.error] end if ~info.convergence if verbose disp('Reduce step size!') end reduce_step = 1; break else if length(info.iterations.error)<5 if verbose disp('Increase step size!') end step = step*1.5; end end end if reduce_step step=step/1.5; info = homotopic_steps(tdx,positive_var_indx,shocks,old_weight,step); time = time+info.time; elseif weight<1 && iter<100 oo_.exo_simul(tdx,positive_var_indx) = shocks; info = perfect_foresight_simulation; info.time = info.time+time; else info.time = time; end